The convergence rate for the laws of logarithms under sub-linear expectations

Let $ \{X_n; n\geq1\} $ be a sequence of independent and identically distributed random variables in a sub-linear expectation space $ (\Omega, \mathcal{H}, \hat{\mathbb{E}}) $. The necessary and sufficient conditions for the convergence rate on the laws of the logarithms and the law of the iterated...

Full description

Bibliographic Details
Main Author: Qunying Wu
Format: Article
Language:English
Published: AIMS Press 2023-08-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.20231264?viewType=HTML
Description
Summary:Let $ \{X_n; n\geq1\} $ be a sequence of independent and identically distributed random variables in a sub-linear expectation space $ (\Omega, \mathcal{H}, \hat{\mathbb{E}}) $. The necessary and sufficient conditions for the convergence rate on the laws of the logarithms and the law of the iterated logarithm are obtained.
ISSN:2473-6988