Existence of Periodic Solutions for a Class of the Generalized Liénard Equations

We study analytically the existence of periodic solutions of the generalized Liénard differential equations of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true">...

Full description

Bibliographic Details
Main Authors: María Teresa de Bustos, Zouhair Diab, Juan Luis G. Guirao, Miguel A. López, Raquel Martínez
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/14/5/944
_version_ 1797495130294321152
author María Teresa de Bustos
Zouhair Diab
Juan Luis G. Guirao
Miguel A. López
Raquel Martínez
author_facet María Teresa de Bustos
Zouhair Diab
Juan Luis G. Guirao
Miguel A. López
Raquel Martínez
author_sort María Teresa de Bustos
collection DOAJ
description We study analytically the existence of periodic solutions of the generalized Liénard differential equations of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>x</mi><mo>¨</mo></mover><mo>+</mo><mi>f</mi><mfenced separators="" open="(" close=")"><mi>x</mi><mo>,</mo><mover accent="true"><mi>x</mi><mo>˙</mo></mover></mfenced><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>+</mo><msup><mi>n</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><mi>g</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><msup><mi>ε</mi><mn>2</mn></msup><msub><mi>p</mi><mn>1</mn></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msup><mi>ε</mi><mn>3</mn></msup><msub><mi>p</mi><mn>2</mn></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> where <i>n</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∈</mo><msup><mi mathvariant="double-struck">N</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></semantics></math></inline-formula> are of class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">C</mi><mn>3</mn></msup><mo>,</mo><mspace width="4pt"></mspace><msup><mi mathvariant="script">C</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula> in a neighborhood of the origin, respectively, the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mi>i</mi></msub></semantics></math></inline-formula> are of class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">C</mi><mn>0</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>π</mi><mo>−</mo></mrow></semantics></math></inline-formula>periodic in the variable <i>t</i>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small parameter as usual. The mathematical tool that we have used is the averaging theory of dynamical systems of second order.
first_indexed 2024-03-10T01:44:02Z
format Article
id doaj.art-2f6db772e2dc45d6ad2a11927956032e
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-10T01:44:02Z
publishDate 2022-05-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-2f6db772e2dc45d6ad2a11927956032e2023-11-23T13:18:40ZengMDPI AGSymmetry2073-89942022-05-0114594410.3390/sym14050944Existence of Periodic Solutions for a Class of the Generalized Liénard EquationsMaría Teresa de Bustos0Zouhair Diab1Juan Luis G. Guirao2Miguel A. López3Raquel Martínez4Department of Applied Mathematics, University of Salamanca, Casas del Parque, 2, 37008 Salamanca, SpainDepartment of Mathematics and Computer Science, Larbi Tebessi University, 12002 Tebessa, AlgeriaDepartment of Applied Mathematics and Statistics, Technical University of Cartagena, Hospital de Marina, 30203 Cartagena, SpainSIDIS Research Group, Department of Mathematics, Institute of Applied Mathematics in Science and Engineering (IMACI), Polytechnic School of Cuenca, University of Castilla-La Mancha, 16071 Cuenca, SpainSIDIS Research Group, Department of Mathematics, Institute of Applied Mathematics in Science and Engineering (IMACI), Polytechnic School of Cuenca, University of Castilla-La Mancha, 16071 Cuenca, SpainWe study analytically the existence of periodic solutions of the generalized Liénard differential equations of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mover accent="true"><mi>x</mi><mo>¨</mo></mover><mo>+</mo><mi>f</mi><mfenced separators="" open="(" close=")"><mi>x</mi><mo>,</mo><mover accent="true"><mi>x</mi><mo>˙</mo></mover></mfenced><mover accent="true"><mi>x</mi><mo>˙</mo></mover><mo>+</mo><msup><mi>n</mi><mn>2</mn></msup><mi>x</mi><mo>+</mo><mi>g</mi><mfenced open="(" close=")"><mi>x</mi></mfenced><mo>=</mo><msup><mi>ε</mi><mn>2</mn></msup><msub><mi>p</mi><mn>1</mn></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>+</mo><msup><mi>ε</mi><mn>3</mn></msup><msub><mi>p</mi><mn>2</mn></msub><mfenced open="(" close=")"><mi>t</mi></mfenced><mo>,</mo></mrow></semantics></math></inline-formula> where <i>n</i><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>∈</mo><msup><mi mathvariant="double-struck">N</mi><mo>*</mo></msup></mrow></semantics></math></inline-formula>, the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mo>,</mo><mi>g</mi></mrow></semantics></math></inline-formula> are of class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi mathvariant="script">C</mi><mn>3</mn></msup><mo>,</mo><mspace width="4pt"></mspace><msup><mi mathvariant="script">C</mi><mn>4</mn></msup></mrow></semantics></math></inline-formula> in a neighborhood of the origin, respectively, the functions <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>p</mi><mi>i</mi></msub></semantics></math></inline-formula> are of class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="script">C</mi><mn>0</mn></msup></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>π</mi><mo>−</mo></mrow></semantics></math></inline-formula>periodic in the variable <i>t</i>, with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>i</mi><mo>=</mo></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ε</mi></semantics></math></inline-formula> is a small parameter as usual. The mathematical tool that we have used is the averaging theory of dynamical systems of second order.https://www.mdpi.com/2073-8994/14/5/944averaging theorygeneralized Liénard differential equationsperiodic solution
spellingShingle María Teresa de Bustos
Zouhair Diab
Juan Luis G. Guirao
Miguel A. López
Raquel Martínez
Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
Symmetry
averaging theory
generalized Liénard differential equations
periodic solution
title Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
title_full Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
title_fullStr Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
title_full_unstemmed Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
title_short Existence of Periodic Solutions for a Class of the Generalized Liénard Equations
title_sort existence of periodic solutions for a class of the generalized lienard equations
topic averaging theory
generalized Liénard differential equations
periodic solution
url https://www.mdpi.com/2073-8994/14/5/944
work_keys_str_mv AT mariateresadebustos existenceofperiodicsolutionsforaclassofthegeneralizedlienardequations
AT zouhairdiab existenceofperiodicsolutionsforaclassofthegeneralizedlienardequations
AT juanluisgguirao existenceofperiodicsolutionsforaclassofthegeneralizedlienardequations
AT miguelalopez existenceofperiodicsolutionsforaclassofthegeneralizedlienardequations
AT raquelmartinez existenceofperiodicsolutionsforaclassofthegeneralizedlienardequations