Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
Abstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosp...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2023-12-01
|
Series: | Journal of Cheminformatics |
Subjects: | |
Online Access: | https://doi.org/10.1186/s13321-023-00792-y |
_version_ | 1797376827114651648 |
---|---|
author | Jasmin Hack Moritz Jordan Alina Schmitt Melissa Raru Hannes Sönke Zorn Alex Seyfarth Isabel Eulenberger Robert Geitner |
author_facet | Jasmin Hack Moritz Jordan Alina Schmitt Melissa Raru Hannes Sönke Zorn Alex Seyfarth Isabel Eulenberger Robert Geitner |
author_sort | Jasmin Hack |
collection | DOAJ |
description | Abstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations. |
first_indexed | 2024-03-08T19:44:13Z |
format | Article |
id | doaj.art-2f712febe37e42298fa071bb2cfaa152 |
institution | Directory Open Access Journal |
issn | 1758-2946 |
language | English |
last_indexed | 2024-03-08T19:44:13Z |
publishDate | 2023-12-01 |
publisher | BMC |
record_format | Article |
series | Journal of Cheminformatics |
spelling | doaj.art-2f712febe37e42298fa071bb2cfaa1522023-12-24T12:27:49ZengBMCJournal of Cheminformatics1758-29462023-12-0115111210.1186/s13321-023-00792-yIlm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shiftsJasmin Hack0Moritz Jordan1Alina Schmitt2Melissa Raru3Hannes Sönke Zorn4Alex Seyfarth5Isabel Eulenberger6Robert Geitner7Institute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauAbstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations.https://doi.org/10.1186/s13321-023-00792-yNMRPhosphorusDatabasePredictionIncrement systemFingerprint |
spellingShingle | Jasmin Hack Moritz Jordan Alina Schmitt Melissa Raru Hannes Sönke Zorn Alex Seyfarth Isabel Eulenberger Robert Geitner Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts Journal of Cheminformatics NMR Phosphorus Database Prediction Increment system Fingerprint |
title | Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts |
title_full | Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts |
title_fullStr | Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts |
title_full_unstemmed | Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts |
title_short | Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts |
title_sort | ilm nmr p31 an open access 31p nuclear magnetic resonance database and data driven prediction of 31p nmr shifts |
topic | NMR Phosphorus Database Prediction Increment system Fingerprint |
url | https://doi.org/10.1186/s13321-023-00792-y |
work_keys_str_mv | AT jasminhack ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT moritzjordan ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT alinaschmitt ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT melissararu ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT hannessonkezorn ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT alexseyfarth ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT isabeleulenberger ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts AT robertgeitner ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts |