Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts

Abstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosp...

Full description

Bibliographic Details
Main Authors: Jasmin Hack, Moritz Jordan, Alina Schmitt, Melissa Raru, Hannes Sönke Zorn, Alex Seyfarth, Isabel Eulenberger, Robert Geitner
Format: Article
Language:English
Published: BMC 2023-12-01
Series:Journal of Cheminformatics
Subjects:
Online Access:https://doi.org/10.1186/s13321-023-00792-y
_version_ 1797376827114651648
author Jasmin Hack
Moritz Jordan
Alina Schmitt
Melissa Raru
Hannes Sönke Zorn
Alex Seyfarth
Isabel Eulenberger
Robert Geitner
author_facet Jasmin Hack
Moritz Jordan
Alina Schmitt
Melissa Raru
Hannes Sönke Zorn
Alex Seyfarth
Isabel Eulenberger
Robert Geitner
author_sort Jasmin Hack
collection DOAJ
description Abstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations.
first_indexed 2024-03-08T19:44:13Z
format Article
id doaj.art-2f712febe37e42298fa071bb2cfaa152
institution Directory Open Access Journal
issn 1758-2946
language English
last_indexed 2024-03-08T19:44:13Z
publishDate 2023-12-01
publisher BMC
record_format Article
series Journal of Cheminformatics
spelling doaj.art-2f712febe37e42298fa071bb2cfaa1522023-12-24T12:27:49ZengBMCJournal of Cheminformatics1758-29462023-12-0115111210.1186/s13321-023-00792-yIlm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shiftsJasmin Hack0Moritz Jordan1Alina Schmitt2Melissa Raru3Hannes Sönke Zorn4Alex Seyfarth5Isabel Eulenberger6Robert Geitner7Institute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauInstitute of Chemistry and Bioengineering, Group of Physical Chemistry/Catalysis, Technical University IlmenauAbstract This publication introduces a novel open-access 31P Nuclear Magnetic Resonance (NMR) shift database. With 14,250 entries encompassing 13,730 distinct molecules from 3,648 references, this database offers a comprehensive repository of organic and inorganic compounds. Emphasizing single-phosphorus atom compounds, the database facilitates data mining and machine learning endeavors, particularly in signal prediction and Computer-Assisted Structure Elucidation (CASE) systems. Additionally, the article compares different models for 31P NMR shift prediction, showcasing the database’s potential utility. Hierarchically Ordered Spherical Environment (HOSE) code-based models and Graph Neural Networks (GNNs) perform exceptionally well with a mean squared error of 11.9 and 11.4 ppm respectively, achieving accuracy comparable to quantum chemical calculations.https://doi.org/10.1186/s13321-023-00792-yNMRPhosphorusDatabasePredictionIncrement systemFingerprint
spellingShingle Jasmin Hack
Moritz Jordan
Alina Schmitt
Melissa Raru
Hannes Sönke Zorn
Alex Seyfarth
Isabel Eulenberger
Robert Geitner
Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
Journal of Cheminformatics
NMR
Phosphorus
Database
Prediction
Increment system
Fingerprint
title Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
title_full Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
title_fullStr Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
title_full_unstemmed Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
title_short Ilm-NMR-P31: an open-access 31P nuclear magnetic resonance database and data-driven prediction of 31P NMR shifts
title_sort ilm nmr p31 an open access 31p nuclear magnetic resonance database and data driven prediction of 31p nmr shifts
topic NMR
Phosphorus
Database
Prediction
Increment system
Fingerprint
url https://doi.org/10.1186/s13321-023-00792-y
work_keys_str_mv AT jasminhack ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT moritzjordan ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT alinaschmitt ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT melissararu ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT hannessonkezorn ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT alexseyfarth ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT isabeleulenberger ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts
AT robertgeitner ilmnmrp31anopenaccess31pnuclearmagneticresonancedatabaseanddatadrivenpredictionof31pnmrshifts