Clocking convergence to Arnold tongues – the circle map revisited

Computational techniques based on ranks of Hankel matrices is used to study the convergence to Arnold tongues. It appears that the process of convergence to the phaselocked mode is far from being trivial. The stable, the unstable and the manifold of nonasymptotic convergence intertwine in the parame...

Full description

Bibliographic Details
Main Authors: Mantas Landauskas, Minvydas Ragulskis
Format: Article
Language:English
Published: Vilnius University Press 2012-12-01
Series:Lietuvos Matematikos Rinkinys
Subjects:
Online Access:https://www.journals.vu.lt/LMR/article/view/14870
_version_ 1818343532392349696
author Mantas Landauskas
Minvydas Ragulskis
author_facet Mantas Landauskas
Minvydas Ragulskis
author_sort Mantas Landauskas
collection DOAJ
description Computational techniques based on ranks of Hankel matrices is used to study the convergence to Arnold tongues. It appears that the process of convergence to the phaselocked mode is far from being trivial. The stable, the unstable and the manifold of nonasymptotic convergence intertwine in the parameter plane of the circle map. Pseudoranks of Hankel matrices carry important physical information about transient processes taking place in discrete nonlinear iterative maps. These pictures in the parameter plane are also beautiful from the aesthetical point of view.
first_indexed 2024-12-13T16:32:05Z
format Article
id doaj.art-2f8637625a054b09a9a25e262914290b
institution Directory Open Access Journal
issn 0132-2818
2335-898X
language English
last_indexed 2024-12-13T16:32:05Z
publishDate 2012-12-01
publisher Vilnius University Press
record_format Article
series Lietuvos Matematikos Rinkinys
spelling doaj.art-2f8637625a054b09a9a25e262914290b2022-12-21T23:38:29ZengVilnius University PressLietuvos Matematikos Rinkinys0132-28182335-898X2012-12-0153A10.15388/LMR.A.2012.10Clocking convergence to Arnold tongues – the circle map revisitedMantas Landauskas0Minvydas Ragulskis1Kaunas University of TechnologyKaunas University of TechnologyComputational techniques based on ranks of Hankel matrices is used to study the convergence to Arnold tongues. It appears that the process of convergence to the phaselocked mode is far from being trivial. The stable, the unstable and the manifold of nonasymptotic convergence intertwine in the parameter plane of the circle map. Pseudoranks of Hankel matrices carry important physical information about transient processes taking place in discrete nonlinear iterative maps. These pictures in the parameter plane are also beautiful from the aesthetical point of view.https://www.journals.vu.lt/LMR/article/view/14870the circle mapArnold tonguerank of a sequence
spellingShingle Mantas Landauskas
Minvydas Ragulskis
Clocking convergence to Arnold tongues – the circle map revisited
Lietuvos Matematikos Rinkinys
the circle map
Arnold tongue
rank of a sequence
title Clocking convergence to Arnold tongues – the circle map revisited
title_full Clocking convergence to Arnold tongues – the circle map revisited
title_fullStr Clocking convergence to Arnold tongues – the circle map revisited
title_full_unstemmed Clocking convergence to Arnold tongues – the circle map revisited
title_short Clocking convergence to Arnold tongues – the circle map revisited
title_sort clocking convergence to arnold tongues the circle map revisited
topic the circle map
Arnold tongue
rank of a sequence
url https://www.journals.vu.lt/LMR/article/view/14870
work_keys_str_mv AT mantaslandauskas clockingconvergencetoarnoldtonguesthecirclemaprevisited
AT minvydasragulskis clockingconvergencetoarnoldtonguesthecirclemaprevisited