Evaluation of service pressure regulation strategy on the performance of a rural water network based on pulse demand; using the method of characteristics
Reducing the occurrence of pipe bursts, reducing leakage, and reducing energy consumption are the three main goals in implementing pressure control programs in water distribution networks. Service pressure regulation strategy is an evolved approach that encompasses all goals of pressure management....
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
IWA Publishing
2022-03-01
|
Series: | Water Supply |
Subjects: | |
Online Access: | http://ws.iwaponline.com/content/22/3/3204 |
Summary: | Reducing the occurrence of pipe bursts, reducing leakage, and reducing energy consumption are the three main goals in implementing pressure control programs in water distribution networks. Service pressure regulation strategy is an evolved approach that encompasses all goals of pressure management. This paper has investigated this approach in a rural network with hydraulic complexities as a case study so that some parts of the network have excess pressure and other low pressure. A computer code based on the method of characteristics (MOC) has been developed for network hydraulic analysis. The generated code analyzes unsteady flow, pressure-driven demand analysis, and dynamic adjustment of pressure control valves based on the target node. Also, the experimental results of a laboratory network have been applied to validate and calibrate the numerical simulation. In addition, by measuring the flow rate and pressure of the network and the results of the minimum night flow method, three consumption patterns were used to generate pulsed nodal demands. Studies show that creating pressure-management areas by hydraulic analysis by MOC will determine the best control strategies. The mean pressure decreased 54% by applying this strategy. Furthermore, the average fluctuations of pressure reduced from 9.7 meters to 3.5 meters. HIGHLIGHTS
Hydraulic analysis was performed by the MOC based on pulse demand.;
The leakage pattern, along with two other consumption patterns, was used to distribute the demand in the nodes.;
A laboratory network was used for the calibration of real network parameters.;
The service pressure regulation led to a 64% reduction in pressure fluctuations.;
RTC-PRV, FO-PRV, and VSD-pump were proposed to control rural network pressure.; |
---|---|
ISSN: | 1606-9749 1607-0798 |