Ground state solutions for p-biharmonic equations

In this article we study the p-biharmonic equation $$ \Delta_p^2u+V(x)|u|^{p-2}u=f(x,u),\quad x\in\mathbb{R}^N, $$ where $\Delta_p^2u=\Delta(|\Delta u|^{p-2}\Delta u)$ is the p-biharmonic operator. When V(x) and f(x,u) satisfy some conditions, we prove that the above equations have Nehari-t...

Full description

Bibliographic Details
Main Authors: Xiaonan Liu, Haibo Chen, Belal Almuaalemi
Format: Article
Language:English
Published: Texas State University 2017-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2017/45/abstr.html
_version_ 1819092432081387520
author Xiaonan Liu
Haibo Chen
Belal Almuaalemi
author_facet Xiaonan Liu
Haibo Chen
Belal Almuaalemi
author_sort Xiaonan Liu
collection DOAJ
description In this article we study the p-biharmonic equation $$ \Delta_p^2u+V(x)|u|^{p-2}u=f(x,u),\quad x\in\mathbb{R}^N, $$ where $\Delta_p^2u=\Delta(|\Delta u|^{p-2}\Delta u)$ is the p-biharmonic operator. When V(x) and f(x,u) satisfy some conditions, we prove that the above equations have Nehari-type ground state solutions.
first_indexed 2024-12-21T22:55:31Z
format Article
id doaj.art-2f96dcb3c7944df19fdd6433f1d35809
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-12-21T22:55:31Z
publishDate 2017-02-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-2f96dcb3c7944df19fdd6433f1d358092022-12-21T18:47:27ZengTexas State UniversityElectronic Journal of Differential Equations1072-66912017-02-01201745,19Ground state solutions for p-biharmonic equationsXiaonan Liu0Haibo Chen1Belal Almuaalemi2 Central South Univ., Changsha, Hunan, China Central South Univ., Changsha, Hunan, China Central South Univ., Changsha, Hunan, China In this article we study the p-biharmonic equation $$ \Delta_p^2u+V(x)|u|^{p-2}u=f(x,u),\quad x\in\mathbb{R}^N, $$ where $\Delta_p^2u=\Delta(|\Delta u|^{p-2}\Delta u)$ is the p-biharmonic operator. When V(x) and f(x,u) satisfy some conditions, we prove that the above equations have Nehari-type ground state solutions.http://ejde.math.txstate.edu/Volumes/2017/45/abstr.htmlp-biharmonic equationsNehari manifoldground state solution
spellingShingle Xiaonan Liu
Haibo Chen
Belal Almuaalemi
Ground state solutions for p-biharmonic equations
Electronic Journal of Differential Equations
p-biharmonic equations
Nehari manifold
ground state solution
title Ground state solutions for p-biharmonic equations
title_full Ground state solutions for p-biharmonic equations
title_fullStr Ground state solutions for p-biharmonic equations
title_full_unstemmed Ground state solutions for p-biharmonic equations
title_short Ground state solutions for p-biharmonic equations
title_sort ground state solutions for p biharmonic equations
topic p-biharmonic equations
Nehari manifold
ground state solution
url http://ejde.math.txstate.edu/Volumes/2017/45/abstr.html
work_keys_str_mv AT xiaonanliu groundstatesolutionsforpbiharmonicequations
AT haibochen groundstatesolutionsforpbiharmonicequations
AT belalalmuaalemi groundstatesolutionsforpbiharmonicequations