An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots
<i>Moringa oleifera</i> Lam., a tree naturally grown in the tropics, is becoming increasingly popular as an industrial crop due to its multitude of useful attributes. Therefore, this study tested the effect of temporary immersion system (TIS) bioreactors for mass micropropagation of <...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-10-01
|
Series: | Agronomy |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-4395/12/11/2672 |
_version_ | 1827647566705065984 |
---|---|
author | Elmien Coetser Elsa S. du Toit Gerhard Prinsloo |
author_facet | Elmien Coetser Elsa S. du Toit Gerhard Prinsloo |
author_sort | Elmien Coetser |
collection | DOAJ |
description | <i>Moringa oleifera</i> Lam., a tree naturally grown in the tropics, is becoming increasingly popular as an industrial crop due to its multitude of useful attributes. Therefore, this study tested the effect of temporary immersion system (TIS) bioreactors for mass micropropagation of <i>Moringa oleifera</i> Lam. callus, roots, and shoots. TIS are tissue culture systems that make use of timers to periodically immerse and drain plant cultures in a liquid nutrient medium instead of using solidified media. In initial studies, <i>Moringa oleifera</i> seeds were germinated in vitro, and in vitro seedling leaflets were then used as explant material for callus production on the pre-culturing media. Two experiments were conducted to improve the protocol for TIS bioreactor production. The first experiment investigated the effect of 6-benzylaminopurine (BA) and kinetin, whereas experiment 2 was conducted to improve shooting production. For the first experiment, leaf material was cultured onto a solidified medium consisting of half-strength Murashige and Skoog (MS) basal salts and 0.5 ppm 1-naphthaleneacetic acid (NAA) to initiate callus production before splitting it between solidified media and bioreactors for shooting. The shooting media consisted of full-strength MS basal salts and different treatments of kinetin and BA. A significant increase in callus production was observed with the use of TIS bioreactors, compared to solidified media, whereas root production had a highly significant interaction effect between the media and the cytokinin treatments. With shoot proliferation in mind, experiment 2 was performed, where microcuttings from in vitro-grown seedlings were excised and cultured onto a solidified MS medium, consisting of a control (0 ppm BA) and two different concentrations of 6-benzylaminopurine (BA) (0.1 ppm BA and 0.2 ppm BA) in the pre-culturing phase. Microcuttings were again excised after two weeks and transferred to the shooting media containing 0.1 ppm BA in TIS bioreactors and semi-solidified medium. Results showed TIS bioreactors to be effective in increasing both the amount and length of shoots produced. Shoot and callus fresh weights were also higher in explants cultured in TIS bioreactors. The results of this study also suggest <i>M. oleifera</i> sensitivities to plant growth regulators (PGRs). In conclusion, this study successfully produced callus, roots, and shoots in both the solidified media and TIS bioreactors, emphasizing the prospect of using TIS bioreactors for mass micropropagation of <i>M. oleifera</i> callus, roots, and shoots. |
first_indexed | 2024-03-09T19:20:49Z |
format | Article |
id | doaj.art-2f994afd52f043a8a66087837fc63236 |
institution | Directory Open Access Journal |
issn | 2073-4395 |
language | English |
last_indexed | 2024-03-09T19:20:49Z |
publishDate | 2022-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Agronomy |
spelling | doaj.art-2f994afd52f043a8a66087837fc632362023-11-24T03:20:15ZengMDPI AGAgronomy2073-43952022-10-011211267210.3390/agronomy12112672An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and ShootsElmien Coetser0Elsa S. du Toit1Gerhard Prinsloo2Department of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria 0002, South AfricaDepartment of Plant and Soil Sciences, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria 0002, South AfricaDepartment of Agriculture and Animal Health, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Johannesburg 1710, South Africa<i>Moringa oleifera</i> Lam., a tree naturally grown in the tropics, is becoming increasingly popular as an industrial crop due to its multitude of useful attributes. Therefore, this study tested the effect of temporary immersion system (TIS) bioreactors for mass micropropagation of <i>Moringa oleifera</i> Lam. callus, roots, and shoots. TIS are tissue culture systems that make use of timers to periodically immerse and drain plant cultures in a liquid nutrient medium instead of using solidified media. In initial studies, <i>Moringa oleifera</i> seeds were germinated in vitro, and in vitro seedling leaflets were then used as explant material for callus production on the pre-culturing media. Two experiments were conducted to improve the protocol for TIS bioreactor production. The first experiment investigated the effect of 6-benzylaminopurine (BA) and kinetin, whereas experiment 2 was conducted to improve shooting production. For the first experiment, leaf material was cultured onto a solidified medium consisting of half-strength Murashige and Skoog (MS) basal salts and 0.5 ppm 1-naphthaleneacetic acid (NAA) to initiate callus production before splitting it between solidified media and bioreactors for shooting. The shooting media consisted of full-strength MS basal salts and different treatments of kinetin and BA. A significant increase in callus production was observed with the use of TIS bioreactors, compared to solidified media, whereas root production had a highly significant interaction effect between the media and the cytokinin treatments. With shoot proliferation in mind, experiment 2 was performed, where microcuttings from in vitro-grown seedlings were excised and cultured onto a solidified MS medium, consisting of a control (0 ppm BA) and two different concentrations of 6-benzylaminopurine (BA) (0.1 ppm BA and 0.2 ppm BA) in the pre-culturing phase. Microcuttings were again excised after two weeks and transferred to the shooting media containing 0.1 ppm BA in TIS bioreactors and semi-solidified medium. Results showed TIS bioreactors to be effective in increasing both the amount and length of shoots produced. Shoot and callus fresh weights were also higher in explants cultured in TIS bioreactors. The results of this study also suggest <i>M. oleifera</i> sensitivities to plant growth regulators (PGRs). In conclusion, this study successfully produced callus, roots, and shoots in both the solidified media and TIS bioreactors, emphasizing the prospect of using TIS bioreactors for mass micropropagation of <i>M. oleifera</i> callus, roots, and shoots.https://www.mdpi.com/2073-4395/12/11/2672microcuttingsmoringatemporary immersion bioreactorsin vitro shootingplant growth regulators |
spellingShingle | Elmien Coetser Elsa S. du Toit Gerhard Prinsloo An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots Agronomy microcuttings moringa temporary immersion bioreactors in vitro shooting plant growth regulators |
title | An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots |
title_full | An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots |
title_fullStr | An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots |
title_full_unstemmed | An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots |
title_short | An Investigation into Using Temporary Immersion Bioreactors to Micropropagate <i>Moringa oleifera</i> Lam. Callus, Roots, and Shoots |
title_sort | investigation into using temporary immersion bioreactors to micropropagate i moringa oleifera i lam callus roots and shoots |
topic | microcuttings moringa temporary immersion bioreactors in vitro shooting plant growth regulators |
url | https://www.mdpi.com/2073-4395/12/11/2672 |
work_keys_str_mv | AT elmiencoetser aninvestigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots AT elsasdutoit aninvestigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots AT gerhardprinsloo aninvestigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots AT elmiencoetser investigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots AT elsasdutoit investigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots AT gerhardprinsloo investigationintousingtemporaryimmersionbioreactorstomicropropagateimoringaoleiferailamcallusrootsandshoots |