On a singular nonlinear Neumann problem

We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*...

Full description

Bibliographic Details
Main Author: Jan Chabrowski
Format: Article
Language:English
Published: AGH Univeristy of Science and Technology Press 2014-01-01
Series:Opuscula Mathematica
Subjects:
Online Access:http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3417.pdf
_version_ 1818187016713535488
author Jan Chabrowski
author_facet Jan Chabrowski
author_sort Jan Chabrowski
collection DOAJ
description We investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*(s)=\frac{2(N-s)}{N-2},\) \(0\lt s\lt 2,\) and \(2^*=\frac{2N}{N-2}\) denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively.
first_indexed 2024-12-11T23:04:20Z
format Article
id doaj.art-2fa09a7159d34743aed1c4b0478e3b3e
institution Directory Open Access Journal
issn 1232-9274
language English
last_indexed 2024-12-11T23:04:20Z
publishDate 2014-01-01
publisher AGH Univeristy of Science and Technology Press
record_format Article
series Opuscula Mathematica
spelling doaj.art-2fa09a7159d34743aed1c4b0478e3b3e2022-12-22T00:46:59ZengAGH Univeristy of Science and Technology PressOpuscula Mathematica1232-92742014-01-01342271290http://dx.doi.org/10.7494/OpMath.2014.34.2.2713417On a singular nonlinear Neumann problemJan Chabrowski0University of Queensland, Department of Mathematics, St. Lucia 4072, Qld, AustraliaWe investigate the solvability of the Neumann problem involving two critical exponents: Sobolev and Hardy-Sobolev. We establish the existence of a solution in three cases: \(\text{(i)}\;\ 2\lt p+1\lt 2^*(s),\) \(\text{(ii)}\;\ p+1=2^*(s)\) and \(\text{(iii)}\;\ 2^*(s)\lt p+1 \leq 2^*,\) where \(2^*(s)=\frac{2(N-s)}{N-2},\) \(0\lt s\lt 2,\) and \(2^*=\frac{2N}{N-2}\) denote the critical Hardy-Sobolev exponent and the critical Sobolev exponent, respectively.http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3417.pdfNeumann problemcritical Sobolev exponentHardy-Sobolev exponent Neumann problem
spellingShingle Jan Chabrowski
On a singular nonlinear Neumann problem
Opuscula Mathematica
Neumann problem
critical Sobolev exponent
Hardy-Sobolev exponent Neumann problem
title On a singular nonlinear Neumann problem
title_full On a singular nonlinear Neumann problem
title_fullStr On a singular nonlinear Neumann problem
title_full_unstemmed On a singular nonlinear Neumann problem
title_short On a singular nonlinear Neumann problem
title_sort on a singular nonlinear neumann problem
topic Neumann problem
critical Sobolev exponent
Hardy-Sobolev exponent Neumann problem
url http://www.opuscula.agh.edu.pl/vol34/2/art/opuscula_math_3417.pdf
work_keys_str_mv AT janchabrowski onasingularnonlinearneumannproblem