IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN

This paper describe the application of backpropagation neural networks as classification and sampling technique (ST) for the extraction of features from the signal wave Electro Encephalo Graph (EEG). This research aims to develop a system that can recognize the EEG signal that is used to move the c...

Full description

Bibliographic Details
Main Authors: Hindarto -, Moch. Hariadi, Mauridhi Hery Purnomo
Format: Article
Language:English
Published: Informatics Department, Engineering Faculty 2011-01-01
Series:Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
Subjects:
Online Access:http://www.kursorjournal.org/index.php/kursor/article/view/22
_version_ 1797744116639989760
author Hindarto -
Moch. Hariadi
Mauridhi Hery Purnomo
author_facet Hindarto -
Moch. Hariadi
Mauridhi Hery Purnomo
author_sort Hindarto -
collection DOAJ
description This paper describe the application of backpropagation neural networks as classification and sampling technique (ST) for the extraction of features from the signal wave Electro Encephalo Graph (EEG). This research aims to develop a system that can recognize the EEG signal that is used to move the cursor. The data used is the EEG data which is IIIA dataset of BCI competition III (BCI Competition III 2003). This data contains data from three subjects: K3b, K6b and L1b. In this study, EEG signal data separated by the imagination of movement to the left, right, leg movements and tongue movements. Decision making has been carried out in two stages. In the first stage, TS is used to extract features from EEG signal data. This feature is as basic inputs in back propagation neural networks as a process of learning. This research used Back Propagation (20-20-10-5-1) and 90 data files EEG signal for the training process. During the identification process into four classes of EEG signal data files data files plus 60 into 150 EEG signal so that the EEG signal data file. The results obtained for the classification of these signals is 80% of the 150 files examined data signal to the process of mapping.
first_indexed 2024-03-12T15:06:06Z
format Article
id doaj.art-2fa10e1c4c8f4ac4a04d829bb991f23b
institution Directory Open Access Journal
issn 0216-0544
2301-6914
language English
last_indexed 2024-03-12T15:06:06Z
publishDate 2011-01-01
publisher Informatics Department, Engineering Faculty
record_format Article
series Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
spelling doaj.art-2fa10e1c4c8f4ac4a04d829bb991f23b2023-08-12T20:42:47ZengInformatics Department, Engineering FacultyJurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi0216-05442301-69142011-01-0161IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUANHindarto -0Moch. Hariadi1Mauridhi Hery Purnomo2Jurusan Teknik Elektro Institut Teknologi Sepuluh NopemberJurusan Teknik Elektro, Institut Teknologi Sepuluh NopemberJurusan Teknik Elektro, Institut Teknologi Sepuluh Nopember This paper describe the application of backpropagation neural networks as classification and sampling technique (ST) for the extraction of features from the signal wave Electro Encephalo Graph (EEG). This research aims to develop a system that can recognize the EEG signal that is used to move the cursor. The data used is the EEG data which is IIIA dataset of BCI competition III (BCI Competition III 2003). This data contains data from three subjects: K3b, K6b and L1b. In this study, EEG signal data separated by the imagination of movement to the left, right, leg movements and tongue movements. Decision making has been carried out in two stages. In the first stage, TS is used to extract features from EEG signal data. This feature is as basic inputs in back propagation neural networks as a process of learning. This research used Back Propagation (20-20-10-5-1) and 90 data files EEG signal for the training process. During the identification process into four classes of EEG signal data files data files plus 60 into 150 EEG signal so that the EEG signal data file. The results obtained for the classification of these signals is 80% of the 150 files examined data signal to the process of mapping. http://www.kursorjournal.org/index.php/kursor/article/view/22Sampling TechniquesBack PropagationEEG Signals
spellingShingle Hindarto -
Moch. Hariadi
Mauridhi Hery Purnomo
IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
Jurnal Ilmiah Kursor: Menuju Solusi Teknologi Informasi
Sampling Techniques
Back Propagation
EEG Signals
title IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
title_full IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
title_fullStr IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
title_full_unstemmed IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
title_short IDENTIFIKASI SINYAL ELEKTRODE ENCHEPALO GRAPH UNTUK MENGGERAKKAN KURSOR MENGGUNAKAN TEKNIK SAMPLING DAN JARINGAN SYARAF TIRUAN
title_sort identifikasi sinyal elektrode enchepalo graph untuk menggerakkan kursor menggunakan teknik sampling dan jaringan syaraf tiruan
topic Sampling Techniques
Back Propagation
EEG Signals
url http://www.kursorjournal.org/index.php/kursor/article/view/22
work_keys_str_mv AT hindarto identifikasisinyalelektrodeenchepalographuntukmenggerakkankursormenggunakantekniksamplingdanjaringansyaraftiruan
AT mochhariadi identifikasisinyalelektrodeenchepalographuntukmenggerakkankursormenggunakantekniksamplingdanjaringansyaraftiruan
AT mauridhiherypurnomo identifikasisinyalelektrodeenchepalographuntukmenggerakkankursormenggunakantekniksamplingdanjaringansyaraftiruan