Synthesis, Cytotoxicity Evaluation and Molecular Docking Studyof <i>N</i>-Phenylpyrazoline Derivatives
The synthesis of N-phenylpyrazolines 1-5 was performed by the cyclocondensation of phenylhydrazine and appropriate chalcones that have been synthesized from our previous work. All of the compounds were elucidated for their structure using GC-MS, FTIR, 1H, and 13C-NMR spectrometers. Their anticancer...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Department of Chemistry, Universitas Gadjah Mada
2019-08-01
|
Series: | Indonesian Journal of Chemistry |
Subjects: | |
Online Access: | https://jurnal.ugm.ac.id/ijc/article/view/45777 |
Summary: | The synthesis of N-phenylpyrazolines 1-5 was performed by the cyclocondensation of phenylhydrazine and appropriate chalcones that have been synthesized from our previous work. All of the compounds were elucidated for their structure using GC-MS, FTIR, 1H, and 13C-NMR spectrometers. Their anticancer activity was evaluated against breast cancer cell line (T47D) and colorectal cancer cell line (WiDr). Compound 4 (4-(3-(4-chlorophenyl)-1-phenyl-4,5-dihydro-1H-pyrazol-5-yl)-2-methoxyphenol) was found to be the most potent compound with IC50 value of 13.11 µg/mL in T47D cell line and 3.29 µg/mL in WiDr cell line. Docking study was conducted to evaluate the interaction between all compounds and EGFR receptor on cancer cells. Among the tested compounds, compound 4 is the only compound that has interaction with MET769 residue through hydrogen bonding due to the presence of hydroxyl group on its structure. Our findings suggest that the synthesized N-phenylpyrazolines in this study have a promising anticancer activity. |
---|---|
ISSN: | 1411-9420 2460-1578 |