Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX.
PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transpor...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC4552645?pdf=render |
_version_ | 1817980766844354560 |
---|---|
author | Jan Lüddecke Karl Forchhammer |
author_facet | Jan Lüddecke Karl Forchhammer |
author_sort | Jan Lüddecke |
collection | DOAJ |
description | PII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state. |
first_indexed | 2024-04-13T22:57:26Z |
format | Article |
id | doaj.art-2fbe639ace70485ba09510745025db58 |
institution | Directory Open Access Journal |
issn | 1932-6203 |
language | English |
last_indexed | 2024-04-13T22:57:26Z |
publishDate | 2015-01-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS ONE |
spelling | doaj.art-2fbe639ace70485ba09510745025db582022-12-22T02:25:57ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01108e013711410.1371/journal.pone.0137114Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX.Jan LüddeckeKarl ForchhammerPII proteins constitute a superfamily of highly conserved signaling devices, common in all domains of life. Through binding of the metabolites ATP, ADP and 2-oxoglutarate (2-OG), they undergo conformational changes which allow them to regulate a variety of target proteins including enzymes, transport proteins and transcription factors. But, in reverse, these target proteins also modulate the metabolite sensing properties of PII, as has been recently shown. We used this effect to refine our PII based Förster resonance energy transfer (FRET) sensor and amplify its sensitivity towards ADP. With this enhanced sensor setup we addressed the question whether the PII protein from the model organism Synechococcus elongatus autonomously switches into the ADP conformation through ATPase activity as proposed in a recently published model. The present study disproves ATPase activity as a relevant mechanism for the transition of PII into the ADP state. In the absence of 2-OG, only the ATP/ADP ratio and concentration of ADP directs the competitive interaction of PII with two targets, one of which preferentially binds PII in the ATP-state, the other in the ADP-state.http://europepmc.org/articles/PMC4552645?pdf=render |
spellingShingle | Jan Lüddecke Karl Forchhammer Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. PLoS ONE |
title | Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. |
title_full | Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. |
title_fullStr | Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. |
title_full_unstemmed | Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. |
title_short | Energy Sensing versus 2-Oxoglutarate Dependent ATPase Switch in the Control of Synechococcus PII Interaction with Its Targets NAGK and PipX. |
title_sort | energy sensing versus 2 oxoglutarate dependent atpase switch in the control of synechococcus pii interaction with its targets nagk and pipx |
url | http://europepmc.org/articles/PMC4552645?pdf=render |
work_keys_str_mv | AT janluddecke energysensingversus2oxoglutaratedependentatpaseswitchinthecontrolofsynechococcuspiiinteractionwithitstargetsnagkandpipx AT karlforchhammer energysensingversus2oxoglutaratedependentatpaseswitchinthecontrolofsynechococcuspiiinteractionwithitstargetsnagkandpipx |