Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers

The estimation of the hydraulic parameters of an aquifer such as the hydraulic conductivity is somehow complicated due to its heterogeneity, on the other hand field and laboratory tests are both time consuming and costly. The use of geostatistical-based techniques for data assimilation could represe...

Full description

Bibliographic Details
Main Authors: Hugo Enrique Júnez-Ferreira, Julián González-Trinidad, Carlos Alberto Júnez-Ferreira, Cruz Octavio Robles Rovelo, G.S. Herrera, Edith Olmos-Trujillo, Carlos Bautista-Capetillo, Ada Rebeca Contreras Rodríguez, Anuard Isaac Pacheco-Guerrero
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Water
Subjects:
Online Access:https://www.mdpi.com/2073-4441/12/11/3136
_version_ 1797548441043206144
author Hugo Enrique Júnez-Ferreira
Julián González-Trinidad
Carlos Alberto Júnez-Ferreira
Cruz Octavio Robles Rovelo
G.S. Herrera
Edith Olmos-Trujillo
Carlos Bautista-Capetillo
Ada Rebeca Contreras Rodríguez
Anuard Isaac Pacheco-Guerrero
author_facet Hugo Enrique Júnez-Ferreira
Julián González-Trinidad
Carlos Alberto Júnez-Ferreira
Cruz Octavio Robles Rovelo
G.S. Herrera
Edith Olmos-Trujillo
Carlos Bautista-Capetillo
Ada Rebeca Contreras Rodríguez
Anuard Isaac Pacheco-Guerrero
author_sort Hugo Enrique Júnez-Ferreira
collection DOAJ
description The estimation of the hydraulic parameters of an aquifer such as the hydraulic conductivity is somehow complicated due to its heterogeneity, on the other hand field and laboratory tests are both time consuming and costly. The use of geostatistical-based techniques for data assimilation could represent an alternative tool that allows the use of space-time aquifer behaviour to characterize hydraulic conductivity heterogeneity. In this paper, a spatiotemporal bivariate methodology was implemented combining historical hydraulic head data with hydraulic conductivity sparse data in order to obtain an estimate of the spatial distribution of the latter variable. This approach takes advantage of the correlation between the hydraulic conductivity (K) and the hydraulic head (H) behaviour through time. In order to evaluate this approach, a synthetic experiment was constructed through a transitory numerical flow-model that simulates hydraulic head values in a horizontally-heterogeneous aquifer. Geostatistical tools were used to describe the correlation between simulated spatiotemporal data of hydraulic head and the spatial distribution of the hydraulic conductivity in a group of model nodes. Subsequently, the Kalman filter was used to estimate the hydraulic conductivity values at nonsampled sites. The results showed acceptable differences between estimated and synthetic hydraulic conductivity data, with low estimate error variances (predominating the 1 m<sup>2</sup>/day<sup>2</sup> value for K for all the cases, however, the smallest number of cells with values above 2 m<sup>2</sup>/day<sup>2</sup> correspond to the bivariate spatiotemporal case) and the best agreement between the estimated errors and the selected model variance (SMSE values of 0.574 and 0.469) were found for the bivariate cases, which suggests that the implemented methodology could be used for reducing calibration efforts, particularly when the hydraulic parameters data are scarce.
first_indexed 2024-03-10T14:59:37Z
format Article
id doaj.art-2fc6fd1916a947eaa18cb54480acf39a
institution Directory Open Access Journal
issn 2073-4441
language English
last_indexed 2024-03-10T14:59:37Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Water
spelling doaj.art-2fc6fd1916a947eaa18cb54480acf39a2023-11-20T20:17:56ZengMDPI AGWater2073-44412020-11-011211313610.3390/w12113136Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in AquifersHugo Enrique Júnez-Ferreira0Julián González-Trinidad1Carlos Alberto Júnez-Ferreira2Cruz Octavio Robles Rovelo3G.S. Herrera4Edith Olmos-Trujillo5Carlos Bautista-Capetillo6Ada Rebeca Contreras Rodríguez7Anuard Isaac Pacheco-Guerrero8Licenciatura en Ciencias y Tecnología del Agua y Doctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoLicenciatura en Ciencias y Tecnología del Agua y Doctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoFacultad de Ingeniería Civil, Universidad Michoacana de San Nicolás de Hidalgo, 58000 Morelia Michoacán, MexicoLicenciatura en Ciencias y Tecnología del Agua y Doctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoInstituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, Delegación Coyoacán, 04510 Ciudad de México, MexicoDoctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoLicenciatura en Ciencias y Tecnología del Agua y Doctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoLicenciatura en Ciencias y Tecnología del Agua y Doctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoDoctorado en Ciencias de la Ingeniería, Universidad Autónoma de Zacatecas, Campus Siglo XXI, 98160 Zacatecas, MexicoThe estimation of the hydraulic parameters of an aquifer such as the hydraulic conductivity is somehow complicated due to its heterogeneity, on the other hand field and laboratory tests are both time consuming and costly. The use of geostatistical-based techniques for data assimilation could represent an alternative tool that allows the use of space-time aquifer behaviour to characterize hydraulic conductivity heterogeneity. In this paper, a spatiotemporal bivariate methodology was implemented combining historical hydraulic head data with hydraulic conductivity sparse data in order to obtain an estimate of the spatial distribution of the latter variable. This approach takes advantage of the correlation between the hydraulic conductivity (K) and the hydraulic head (H) behaviour through time. In order to evaluate this approach, a synthetic experiment was constructed through a transitory numerical flow-model that simulates hydraulic head values in a horizontally-heterogeneous aquifer. Geostatistical tools were used to describe the correlation between simulated spatiotemporal data of hydraulic head and the spatial distribution of the hydraulic conductivity in a group of model nodes. Subsequently, the Kalman filter was used to estimate the hydraulic conductivity values at nonsampled sites. The results showed acceptable differences between estimated and synthetic hydraulic conductivity data, with low estimate error variances (predominating the 1 m<sup>2</sup>/day<sup>2</sup> value for K for all the cases, however, the smallest number of cells with values above 2 m<sup>2</sup>/day<sup>2</sup> correspond to the bivariate spatiotemporal case) and the best agreement between the estimated errors and the selected model variance (SMSE values of 0.574 and 0.469) were found for the bivariate cases, which suggests that the implemented methodology could be used for reducing calibration efforts, particularly when the hydraulic parameters data are scarce.https://www.mdpi.com/2073-4441/12/11/3136hydraulic conductivitygroundwater numerical modellingbivariate spatiotemporal geostatisticsKalman filter
spellingShingle Hugo Enrique Júnez-Ferreira
Julián González-Trinidad
Carlos Alberto Júnez-Ferreira
Cruz Octavio Robles Rovelo
G.S. Herrera
Edith Olmos-Trujillo
Carlos Bautista-Capetillo
Ada Rebeca Contreras Rodríguez
Anuard Isaac Pacheco-Guerrero
Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
Water
hydraulic conductivity
groundwater numerical modelling
bivariate spatiotemporal geostatistics
Kalman filter
title Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
title_full Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
title_fullStr Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
title_full_unstemmed Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
title_short Implementation of the Kalman Filter for a Geostatistical Bivariate Spatiotemporal Estimation of Hydraulic Conductivity in Aquifers
title_sort implementation of the kalman filter for a geostatistical bivariate spatiotemporal estimation of hydraulic conductivity in aquifers
topic hydraulic conductivity
groundwater numerical modelling
bivariate spatiotemporal geostatistics
Kalman filter
url https://www.mdpi.com/2073-4441/12/11/3136
work_keys_str_mv AT hugoenriquejunezferreira implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT juliangonzaleztrinidad implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT carlosalbertojunezferreira implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT cruzoctavioroblesrovelo implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT gsherrera implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT editholmostrujillo implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT carlosbautistacapetillo implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT adarebecacontrerasrodriguez implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers
AT anuardisaacpachecoguerrero implementationofthekalmanfilterforageostatisticalbivariatespatiotemporalestimationofhydraulicconductivityinaquifers