Summary: | Comparing the structural performance and environmental impact of parts made of natural and synthetic fibers has become increasingly important for industry and education, as the benefits of one type of fiber over another are not always clear. The current work discusses the advantages and disadvantages of using natural and synthetic fibers and compares the flexural performance of parts made of each of these fibers and their environmental impact. This paper investigates the flexural behavior of epoxy composites modified by glass and flax fabrics through experimental, numerical, and analytical studies. Specimens with various fabrics (dried and non-dried) were fabricated to test their performance. The failure of unidirectional glass and flax fiber reinforced polymer composite laminate was examined by destructive testing. A finite-element model was developed, and the mechanical behaviors of fiber-reinforced composites were predicted in a three-point bending test. Experimental results were compared to numerical analysis to validate the model’s accuracy. A life cycle assessment (LCA) was employed to determine the climate impact of composite production. The analysis revealed a decreased environmental effect of plant-based panels suggesting that they are less energy and CO<sub>2</sub> intensive than synthetic solutions. The LCA model can be applied in further studies of products that consist of or use flax-based composites.
|