Modeling Moisture Absorption of Flax/Sisal Reinforced Hybrid Biocomposites Using Fick’s and ANN Methods

Natural fiber composites are being increasingly used in several fields, owing to their considerable cost, weight, and environmental benefits. The objective of this research is to study the effect of water absorption on the behavior of laminated biocomposites using flax (F) and sisal (S) fiber biocom...

Full description

Bibliographic Details
Main Authors: Ahmed Belaadi, Aziz Saaidia, Messaouda Boumaaza, Hassan Alshahrani, Mostefa Bourchak
Format: Article
Language:English
Published: Taylor & Francis Group 2023-04-01
Series:Journal of Natural Fibers
Subjects:
Online Access:http://dx.doi.org/10.1080/15440478.2022.2140322
Description
Summary:Natural fiber composites are being increasingly used in several fields, owing to their considerable cost, weight, and environmental benefits. The objective of this research is to study the effect of water absorption on the behavior of laminated biocomposites using flax (F) and sisal (S) fiber biocomposites with different stacking sequences (3S and 3F) and fiber orientation at 90° (F090s and S090s), as well as hybridizations (F/4S90/F and S/4F90/S) to reinforce an epoxy matrix. The kinetics of water diffusion within the proposed biocomposites was monitored and analyzed through a model-based optimization approach using artificial neural network (ANN) method. The results of this study showed that the amount of water absorbed by different types of biocomposites increased with time according to Fick’s law. Non-hybrid flax and sisal fiber composites (UD and (0/90°)s oriented) had lower water absorption rates than the hybrid orientation. It was also observed that sisal fiber was most sensitive to water absorption than flax. A high correlation of experimental data with the model was revealed which denoted that the ANN learning process was perfectly performed. Therefore, it was inferred that the ANN approach can accurately predict biocomposites water absorption.
ISSN:1544-0478
1544-046X