Superpixel-Based Style Transfer Method for Single-Temporal Remote Sensing Image Identification in Forest Type Groups

Forests are the most important carbon reservoirs on land, and forest carbon sinks can effectively reduce atmospheric CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2&l...

Full description

Bibliographic Details
Main Authors: Zhenyu Yu, Jinnian Wang, Xiankun Yang, Juan Ma
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/15/3875
Description
Summary:Forests are the most important carbon reservoirs on land, and forest carbon sinks can effectively reduce atmospheric CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> concentrations and mitigate climate change. In recent years, various satellites have been launched that provide opportunities for identifying forest types with low cost and high time efficiency. Using multi-temporal remote sensing images and combining them with vegetation indices takes into account the vegetation growth pattern and substantially improves the identification accuracy, but it has high requirements for imaging, such as registration, multiple times, etc. Sometimes, it is difficult to satisfy, the plateau area is severely limited by the influence of clouds and rain, and Gaofen (GF) data require more control points for orthophoto correction. The study area was chosen to be Huize County, situated in Qujing City of Yunnan Province, China. The analysis was using the GF and Landsat images. According to deep learning and remote sensing image feature extraction methods, the semantic segmentation method of F-Pix2Pix was proposed, and the domain adaptation method according to transfer learning effectively solved the class imbalance in needleleaf/broadleaf forest identification. The results showed that (1) this method had the best performance and a higher accuracy than the existing products, 21.48% in non-forest/forest and 29.44% in needleleaf/broadleaf forest for MIoU improvement. (2) Applying transfer learning domain adaptation to semantic segmentation showed significant benefits, and this approach utilized satellite images of different resolutions to solve the class imbalance problem. (3) It can be used for long-term monitoring of multiple images and has strong generalization. The identification of needleleaf and broadleaf forests combined with the actual geographical characteristics of the forest provides a foundation for the accurate estimation of regional carbon sources/sinks.
ISSN:2072-4292