A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning

The ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefiel...

Full description

Bibliographic Details
Main Authors: Jose Alberto Arano-Martinez, Claudia Lizbeth Martínez-González, Ma Isabel Salazar, Carlos Torres-Torres
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Biosensors
Subjects:
Online Access:https://www.mdpi.com/2079-6374/12/9/710
_version_ 1827662886867042304
author Jose Alberto Arano-Martinez
Claudia Lizbeth Martínez-González
Ma Isabel Salazar
Carlos Torres-Torres
author_facet Jose Alberto Arano-Martinez
Claudia Lizbeth Martínez-González
Ma Isabel Salazar
Carlos Torres-Torres
author_sort Jose Alberto Arano-Martinez
collection DOAJ
description The ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all over the world, and biosensors have emerged as a key for providing an analysis based on physical and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects open up a series of options to expand the applications of optical biosensors. Nonlinearities together with computer tools are suitable for the identification of complex low-dimensional agents. Machine learning methods can approximate functions to reveal patterns in the detection of dynamic objects in the human body and determine viruses, harmful entities, or strange kinetics in cells.
first_indexed 2024-03-10T00:35:10Z
format Article
id doaj.art-2fda65cd569f4eebb94aed4539ebc6c2
institution Directory Open Access Journal
issn 2079-6374
language English
last_indexed 2024-03-10T00:35:10Z
publishDate 2022-09-01
publisher MDPI AG
record_format Article
series Biosensors
spelling doaj.art-2fda65cd569f4eebb94aed4539ebc6c22023-11-23T15:17:49ZengMDPI AGBiosensors2079-63742022-09-0112971010.3390/bios12090710A Framework for Biosensors Assisted by Multiphoton Effects and Machine LearningJose Alberto Arano-Martinez0Claudia Lizbeth Martínez-González1Ma Isabel Salazar2Carlos Torres-Torres3Sección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, MexicoSección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, MexicoDepartamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 11340, MexicoSección de Estudios de Posgrado e Investigación, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Zacatenco, Instituto Politécnico Nacional, Mexico City 07738, MexicoThe ability to interpret information through automatic sensors is one of the most important pillars of modern technology. In particular, the potential of biosensors has been used to evaluate biological information of living organisms, and to detect danger or predict urgent situations in a battlefield, as in the invasion of SARS-CoV-2 in this era. This work is devoted to describing a panoramic overview of optical biosensors that can be improved by the assistance of nonlinear optics and machine learning methods. Optical biosensors have demonstrated their effectiveness in detecting a diverse range of viruses. Specifically, the SARS-CoV-2 virus has generated disturbance all over the world, and biosensors have emerged as a key for providing an analysis based on physical and chemical phenomena. In this perspective, we highlight how multiphoton interactions can be responsible for an enhancement in sensibility exhibited by biosensors. The nonlinear optical effects open up a series of options to expand the applications of optical biosensors. Nonlinearities together with computer tools are suitable for the identification of complex low-dimensional agents. Machine learning methods can approximate functions to reveal patterns in the detection of dynamic objects in the human body and determine viruses, harmful entities, or strange kinetics in cells.https://www.mdpi.com/2079-6374/12/9/710optical biosensorsphotonicsmachine learningnonlinear opticsSARS-CoV-2
spellingShingle Jose Alberto Arano-Martinez
Claudia Lizbeth Martínez-González
Ma Isabel Salazar
Carlos Torres-Torres
A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
Biosensors
optical biosensors
photonics
machine learning
nonlinear optics
SARS-CoV-2
title A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
title_full A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
title_fullStr A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
title_full_unstemmed A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
title_short A Framework for Biosensors Assisted by Multiphoton Effects and Machine Learning
title_sort framework for biosensors assisted by multiphoton effects and machine learning
topic optical biosensors
photonics
machine learning
nonlinear optics
SARS-CoV-2
url https://www.mdpi.com/2079-6374/12/9/710
work_keys_str_mv AT josealbertoaranomartinez aframeworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT claudializbethmartinezgonzalez aframeworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT maisabelsalazar aframeworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT carlostorrestorres aframeworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT josealbertoaranomartinez frameworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT claudializbethmartinezgonzalez frameworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT maisabelsalazar frameworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning
AT carlostorrestorres frameworkforbiosensorsassistedbymultiphotoneffectsandmachinelearning