ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS
ABSTRACT The aim of this study is to simplify the difficult excavation that is caused by the root-sand complex in the process of harvesting Cyperus esculentus in the desert of Xinjiang by performing mechanical tests and analysis of the interaction between the vibrating excavation shovel and the rota...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Sociedade Brasileira de Engenharia Agrícola
2023-07-01
|
Series: | Engenharia Agrícola |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300304&tlng=en |
_version_ | 1797767916042584064 |
---|---|
author | Minghao Pei Shiguan An Shen Chen Jiangtao Qi Yaping Li |
author_facet | Minghao Pei Shiguan An Shen Chen Jiangtao Qi Yaping Li |
author_sort | Minghao Pei |
collection | DOAJ |
description | ABSTRACT The aim of this study is to simplify the difficult excavation that is caused by the root-sand complex in the process of harvesting Cyperus esculentus in the desert of Xinjiang by performing mechanical tests and analysis of the interaction between the vibrating excavation shovel and the rotary blade on the root-sand complex. The rotary blade number, rotary blade speed and digging depth were used as the test parameters, and the Cyperus esculentus breakage rate, root-grass crushing rate, and soil carrying rate were used as the test indicators. The characteristics of the influence of various factors and their interaction on the crushing and separation of the root-sand complex were explored. A parameter combination optimization model is verified by experimental data. The test results showed that the optimal combination was as follows: the number of rotary blades was 20, the rotational speed of the rotary blade was 373 r/min, and the digging depth was 12 cm. At this time, the Cyperus esculentus breakage rate, root-grass crushing rate, and soil carrying rate were 2.62%, 63.68% and 55.40%, respectively. This study can support the development of a Cyperus esculentus harvester suitable for deserts in Xinjiang. |
first_indexed | 2024-03-12T20:46:55Z |
format | Article |
id | doaj.art-2fdad64291004111a17d9e17f9115679 |
institution | Directory Open Access Journal |
issn | 0100-6916 |
language | English |
last_indexed | 2024-03-12T20:46:55Z |
publishDate | 2023-07-01 |
publisher | Sociedade Brasileira de Engenharia Agrícola |
record_format | Article |
series | Engenharia Agrícola |
spelling | doaj.art-2fdad64291004111a17d9e17f91156792023-08-01T07:41:35ZengSociedade Brasileira de Engenharia AgrícolaEngenharia Agrícola0100-69162023-07-0143310.1590/1809-4430-eng.agric.v43n3e20220121/2023ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTSMinghao PeiShiguan AnShen ChenJiangtao Qihttps://orcid.org/0000-0002-1622-4186Yaping Lihttps://orcid.org/0000-0001-9766-3908ABSTRACT The aim of this study is to simplify the difficult excavation that is caused by the root-sand complex in the process of harvesting Cyperus esculentus in the desert of Xinjiang by performing mechanical tests and analysis of the interaction between the vibrating excavation shovel and the rotary blade on the root-sand complex. The rotary blade number, rotary blade speed and digging depth were used as the test parameters, and the Cyperus esculentus breakage rate, root-grass crushing rate, and soil carrying rate were used as the test indicators. The characteristics of the influence of various factors and their interaction on the crushing and separation of the root-sand complex were explored. A parameter combination optimization model is verified by experimental data. The test results showed that the optimal combination was as follows: the number of rotary blades was 20, the rotational speed of the rotary blade was 373 r/min, and the digging depth was 12 cm. At this time, the Cyperus esculentus breakage rate, root-grass crushing rate, and soil carrying rate were 2.62%, 63.68% and 55.40%, respectively. This study can support the development of a Cyperus esculentus harvester suitable for deserts in Xinjiang.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300304&tlng=enCyperus esculentusexcavationroot-sand complexrotary tillagevibrating shovel |
spellingShingle | Minghao Pei Shiguan An Shen Chen Jiangtao Qi Yaping Li ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS Engenharia Agrícola Cyperus esculentus excavation root-sand complex rotary tillage vibrating shovel |
title | ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS |
title_full | ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS |
title_fullStr | ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS |
title_full_unstemmed | ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS |
title_short | ANALYSIS AND EXPERIMENTATION OF THE CRUSHING AND SEPARATION PROCESS OF THE ROOT-SAND COMPLEX OF HARVESTED AND EXCAVATED Cyperus esculentus L. IN DESERTS |
title_sort | analysis and experimentation of the crushing and separation process of the root sand complex of harvested and excavated cyperus esculentus l in deserts |
topic | Cyperus esculentus excavation root-sand complex rotary tillage vibrating shovel |
url | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0100-69162023000300304&tlng=en |
work_keys_str_mv | AT minghaopei analysisandexperimentationofthecrushingandseparationprocessoftherootsandcomplexofharvestedandexcavatedcyperusesculentuslindeserts AT shiguanan analysisandexperimentationofthecrushingandseparationprocessoftherootsandcomplexofharvestedandexcavatedcyperusesculentuslindeserts AT shenchen analysisandexperimentationofthecrushingandseparationprocessoftherootsandcomplexofharvestedandexcavatedcyperusesculentuslindeserts AT jiangtaoqi analysisandexperimentationofthecrushingandseparationprocessoftherootsandcomplexofharvestedandexcavatedcyperusesculentuslindeserts AT yapingli analysisandexperimentationofthecrushingandseparationprocessoftherootsandcomplexofharvestedandexcavatedcyperusesculentuslindeserts |