Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation

Double perovskite Cs<sub>2</sub>SnI<sub>6</sub> and its doping products (with SnI<sub>2</sub>, SnF<sub>2</sub> or organic lithium salts added) have been utilized as p-type hole transport materials for perovskite and dye-sensitized solar cells in many p...

Full description

Bibliographic Details
Main Authors: Jin Zhang, Chen Yang, Yulong Liao, Shijie Li, Pengfei Yang, Yingxue Xi, Weiguo Liu, Dmitriy A. Golosov, Sergey M. Zavadski, Sergei N. Melnikov
Format: Article
Language:English
Published: MDPI AG 2022-07-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/12/13/2279
_version_ 1827619348588527616
author Jin Zhang
Chen Yang
Yulong Liao
Shijie Li
Pengfei Yang
Yingxue Xi
Weiguo Liu
Dmitriy A. Golosov
Sergey M. Zavadski
Sergei N. Melnikov
author_facet Jin Zhang
Chen Yang
Yulong Liao
Shijie Li
Pengfei Yang
Yingxue Xi
Weiguo Liu
Dmitriy A. Golosov
Sergey M. Zavadski
Sergei N. Melnikov
author_sort Jin Zhang
collection DOAJ
description Double perovskite Cs<sub>2</sub>SnI<sub>6</sub> and its doping products (with SnI<sub>2</sub>, SnF<sub>2</sub> or organic lithium salts added) have been utilized as p-type hole transport materials for perovskite and dye-sensitized solar cells in many pieces of research, where the mechanism for producing p-type Cs<sub>2</sub>SnI<sub>6</sub> is rarely reported. In this paper, the mechanism of forming p-type Li<sup>+</sup> doped Cs<sub>2</sub>SnI<sub>6</sub> was revealed by first-principles simulation. The simulation results show that Li<sup>+</sup> entered the Cs<sub>2</sub>SnI<sub>6</sub> lattice by interstitial doping to form strong interaction between Li<sup>+</sup> and I<sup>−</sup>, resulting in the splitting of the α spin-orbital of I–p at the top of the valence band, with the intermediate energy levels created and the absorption edge redshifted. The experimental results confirmed that Li<sup>+</sup> doping neither changed the crystal phase of Cs<sub>2</sub>SnI<sub>6</sub>, nor introduced impurities. The Hall effect test results of Li<sup>+</sup> doped Cs<sub>2</sub>SnI<sub>6</sub> thin film samples showed that Li<sup>+</sup> doping transformed Cs<sub>2</sub>SnI<sub>6</sub> into a p-type semiconductor, and substantially promoted its carrier mobility (356.6 cm<sup>2</sup>/Vs), making it an ideal hole transport material.
first_indexed 2024-03-09T10:26:17Z
format Article
id doaj.art-2fdbc6d7ab2441569c3555f25da37e0d
institution Directory Open Access Journal
issn 2079-4991
language English
last_indexed 2024-03-09T10:26:17Z
publishDate 2022-07-01
publisher MDPI AG
record_format Article
series Nanomaterials
spelling doaj.art-2fdbc6d7ab2441569c3555f25da37e0d2023-12-01T21:37:45ZengMDPI AGNanomaterials2079-49912022-07-011213227910.3390/nano12132279Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental InvestigationJin Zhang0Chen Yang1Yulong Liao2Shijie Li3Pengfei Yang4Yingxue Xi5Weiguo Liu6Dmitriy A. Golosov7Sergey M. Zavadski8Sergei N. Melnikov9Shaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaShaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaState Key Laboratory of Electronic Thin Film and Integrated Devices, University of Electronic Science and Technology, Chengdu 610054, ChinaShaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaShaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaShaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaShaanxi Province Key Laboratory of Thin Films Technology and Optical Test, School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710032, ChinaCenter 9.1 “Electronic Technologies and Engineering Diagnostics of Process Media and Solid State Structures” R&D Department, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, BelarusCenter 9.1 “Electronic Technologies and Engineering Diagnostics of Process Media and Solid State Structures” R&D Department, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, BelarusCenter 9.1 “Electronic Technologies and Engineering Diagnostics of Process Media and Solid State Structures” R&D Department, Belarusian State University of Informatics and Radioelectronics, 220013 Minsk, BelarusDouble perovskite Cs<sub>2</sub>SnI<sub>6</sub> and its doping products (with SnI<sub>2</sub>, SnF<sub>2</sub> or organic lithium salts added) have been utilized as p-type hole transport materials for perovskite and dye-sensitized solar cells in many pieces of research, where the mechanism for producing p-type Cs<sub>2</sub>SnI<sub>6</sub> is rarely reported. In this paper, the mechanism of forming p-type Li<sup>+</sup> doped Cs<sub>2</sub>SnI<sub>6</sub> was revealed by first-principles simulation. The simulation results show that Li<sup>+</sup> entered the Cs<sub>2</sub>SnI<sub>6</sub> lattice by interstitial doping to form strong interaction between Li<sup>+</sup> and I<sup>−</sup>, resulting in the splitting of the α spin-orbital of I–p at the top of the valence band, with the intermediate energy levels created and the absorption edge redshifted. The experimental results confirmed that Li<sup>+</sup> doping neither changed the crystal phase of Cs<sub>2</sub>SnI<sub>6</sub>, nor introduced impurities. The Hall effect test results of Li<sup>+</sup> doped Cs<sub>2</sub>SnI<sub>6</sub> thin film samples showed that Li<sup>+</sup> doping transformed Cs<sub>2</sub>SnI<sub>6</sub> into a p-type semiconductor, and substantially promoted its carrier mobility (356.6 cm<sup>2</sup>/Vs), making it an ideal hole transport material.https://www.mdpi.com/2079-4991/12/13/2279first principles calculationperovskitehole transportdopingultrasonic spraying
spellingShingle Jin Zhang
Chen Yang
Yulong Liao
Shijie Li
Pengfei Yang
Yingxue Xi
Weiguo Liu
Dmitriy A. Golosov
Sergey M. Zavadski
Sergei N. Melnikov
Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
Nanomaterials
first principles calculation
perovskite
hole transport
doping
ultrasonic spraying
title Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
title_full Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
title_fullStr Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
title_full_unstemmed Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
title_short Effect of Li<sup>+</sup> Doping on Photoelectric Properties of Double Perovskite Cs<sub>2</sub>SnI<sub>6</sub>: First Principles Calculation and Experimental Investigation
title_sort effect of li sup sup doping on photoelectric properties of double perovskite cs sub 2 sub sni sub 6 sub first principles calculation and experimental investigation
topic first principles calculation
perovskite
hole transport
doping
ultrasonic spraying
url https://www.mdpi.com/2079-4991/12/13/2279
work_keys_str_mv AT jinzhang effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT chenyang effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT yulongliao effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT shijieli effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT pengfeiyang effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT yingxuexi effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT weiguoliu effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT dmitriyagolosov effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT sergeymzavadski effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation
AT sergeinmelnikov effectoflisupsupdopingonphotoelectricpropertiesofdoubleperovskitecssub2subsnisub6subfirstprinciplescalculationandexperimentalinvestigation