Bethe Ansatz Solutions to Quasi Exactly Solvable Difference Equations

Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meix...

Full description

Bibliographic Details
Main Authors: Ryu Sasaki, Wen-Li Yang, Yao-Zhong Zhang
Format: Article
Language:English
Published: National Academy of Science of Ukraine 2009-11-01
Series:Symmetry, Integrability and Geometry: Methods and Applications
Subjects:
Online Access:http://dx.doi.org/10.3842/SIGMA.2009.104
Description
Summary:Bethe ansatz formulation is presented for several explicit examples of quasi exactly solvable difference equations of one degree of freedom which are introduced recently by one of the present authors. These equations are deformation of the well-known exactly solvable difference equations of the Meixner-Pollaczek, continuous Hahn, continuous dual Hahn, Wilson and Askey-Wilson polynomials. Up to an overall factor of the so-called pseudo ground state wavefunction, the eigenfunctions within the exactly solvable subspace are given by polynomials whose roots are solutions of the associated Bethe ansatz equations. The corresponding eigenvalues are expressed in terms of these roots.
ISSN:1815-0659