A Reversible Hydropump–Turbine System

Water-pumped storage systems have become an ideal alternative to regulate the intermittent power delivered by renewable energy sources. For small-scale operations, a type of centrifugal pump coupled to asynchronous machines represents an adequate solution due to their techno-economic feasibility in...

Full description

Bibliographic Details
Main Authors: Luis Miguel Esquivel-Sancho, Mauricio Muñoz-Arias, Hayden Phillips-Brenes, Roberto Pereira-Arroyo
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/18/9086
Description
Summary:Water-pumped storage systems have become an ideal alternative to regulate the intermittent power delivered by renewable energy sources. For small-scale operations, a type of centrifugal pump coupled to asynchronous machines represents an adequate solution due to their techno-economic feasibility in addition to their ability to operate as reversible systems. This work provides a novel port-Hamiltonian modelling approach to an integrated reversible hydropump–turbine system, that can be switched from motor pump to turbine-generator by employing a conventional hydraulic switch. Our modelling strategy provides a clear physical interpretation of the energy flow from the mechanical to electrical domains. Then, the model was built with multi-domain storing and dissipating elements and the interconnection of well-defined input–output port pairs. The system’s internal energy, i.e., Hamiltonian function, can be exploited for energy-shaping control strategies. The performance of our modelling approach is validated via numerical simulations.
ISSN:2076-3417