State-Feedback Control in Descriptor Discrete-Time Fractional-Order Linear Systems: A Superstability-Based Approach

In this article, the superstabilizing state-feedback control problem in descriptor discrete-time fractional-order linear (DDFL) systems with a regular matrix pencil is studied. Methods for investigating the stability and superstability of the considered class of dynamical systems are presented. Proc...

Full description

Bibliographic Details
Main Author: Kamil Borawski
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/22/10568
Description
Summary:In this article, the superstabilizing state-feedback control problem in descriptor discrete-time fractional-order linear (DDFL) systems with a regular matrix pencil is studied. Methods for investigating the stability and superstability of the considered class of dynamical systems are presented. Procedures for the computation of the static state-feedback (SSF) and dynamic state-feedback (DSF) gain matrices such that the closed-loop DDFL (CL-DDFL) system is superstable are presented. A numerical example is used to show the efficacy of the presented approach. Our considerations were based on the Drazin inverse matrix method.
ISSN:2076-3417