Entire Gaussian Functions: Probability of Zeros Absence

In this paper, we consider a random entire function of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,<...

Full description

Bibliographic Details
Main Authors: Andriy Kuryliak, Oleh Skaskiv
Format: Article
Language:English
Published: MDPI AG 2023-03-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/12/3/255
_version_ 1797613471289835520
author Andriy Kuryliak
Oleh Skaskiv
author_facet Andriy Kuryliak
Oleh Skaskiv
author_sort Andriy Kuryliak
collection DOAJ
description In this paper, we consider a random entire function of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><msub><mi>ε</mi><mi>n</mi></msub><mrow><mo>(</mo><msub><mi>ω</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>×</mo><msub><mi>ξ</mi><mi>n</mi></msub><mrow><mo>(</mo><msub><mi>ω</mi><mn>2</mn></msub><mo>)</mo></mrow><msub><mi>f</mi><mi>n</mi></msub><msup><mi>z</mi><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>ε</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is a sequence of independent Steinhaus random variables, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>ξ</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is the a sequence of independent standard complex Gaussian random variables, and a sequence of numbers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula> is such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><munder><mover><mo movablelimits="false">lim</mo><mo>¯</mo></mover><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><mroot><mrow><mrow><mo>|</mo></mrow><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>|</mo></mrow></mrow><mi>n</mi></mroot><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>#</mo><mo>{</mo><mi>n</mi><mo lspace="0pt">:</mo><msub><mi>f</mi><mi>n</mi></msub><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><mo>+</mo><mo>∞</mo><mo>.</mo></mrow></semantics></math></inline-formula> We investigate asymptotic estimates of the probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mn>0</mn></msub><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mo>{</mo><mi>ω</mi><mo lspace="0pt">:</mo><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> has no zeros inside <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi mathvariant="double-struck">D</mi><mo>}</mo></mrow></semantics></math></inline-formula> as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> outside of some set <i>E</i> of finite logarithmic measure, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∫</mo><mrow><mi>E</mi><mo>∩</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></msub><mi>d</mi><mi>ln</mi><mi>r</mi><mo><</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. The obtained asymptotic estimates for the probability of the absence of zeros for entire Gaussian functions are in a certain sense the best possible result. Furthermore, we give an answer to an open question of A. Nishry for such random functions.
first_indexed 2024-03-11T06:56:17Z
format Article
id doaj.art-302ed554fe574271abccdc3af4329506
institution Directory Open Access Journal
issn 2075-1680
language English
last_indexed 2024-03-11T06:56:17Z
publishDate 2023-03-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj.art-302ed554fe574271abccdc3af43295062023-11-17T09:34:56ZengMDPI AGAxioms2075-16802023-03-0112325510.3390/axioms12030255Entire Gaussian Functions: Probability of Zeros AbsenceAndriy Kuryliak0Oleh Skaskiv1Faculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, UkraineFaculty of Mechanics and Mathematics, Ivan Franko National University of Lviv, 79000 Lviv, UkraineIn this paper, we consider a random entire function of the form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mo>+</mo><mo>∞</mo></mrow></msubsup><msub><mi>ε</mi><mi>n</mi></msub><mrow><mo>(</mo><msub><mi>ω</mi><mn>1</mn></msub><mo>)</mo></mrow></mrow></semantics></math></inline-formula><inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>×</mo><msub><mi>ξ</mi><mi>n</mi></msub><mrow><mo>(</mo><msub><mi>ω</mi><mn>2</mn></msub><mo>)</mo></mrow><msub><mi>f</mi><mi>n</mi></msub><msup><mi>z</mi><mi>n</mi></msup><mo>,</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>ε</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is a sequence of independent Steinhaus random variables, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><msub><mi>ξ</mi><mi>n</mi></msub><mo>)</mo></mrow></semantics></math></inline-formula> is the a sequence of independent standard complex Gaussian random variables, and a sequence of numbers <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>f</mi><mi>n</mi></msub><mo>∈</mo><mi mathvariant="double-struck">C</mi></mrow></semantics></math></inline-formula> is such that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><munder><mover><mo movablelimits="false">lim</mo><mo>¯</mo></mover><mrow><mi>n</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></munder><mroot><mrow><mrow><mo>|</mo></mrow><msub><mi>f</mi><mi>n</mi></msub><mrow><mo>|</mo></mrow></mrow><mi>n</mi></mroot><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>#</mo><mo>{</mo><mi>n</mi><mo lspace="0pt">:</mo><msub><mi>f</mi><mi>n</mi></msub><mo>≠</mo><mn>0</mn><mo>}</mo><mo>=</mo><mo>+</mo><mo>∞</mo><mo>.</mo></mrow></semantics></math></inline-formula> We investigate asymptotic estimates of the probability <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>P</mi><mn>0</mn></msub><mrow><mrow><mo>(</mo><mi>r</mi><mo>)</mo></mrow><mo>=</mo><mi>P</mi><mo>{</mo><mi>ω</mi><mo lspace="0pt">:</mo><mi>f</mi><mrow><mo>(</mo><mi>z</mi><mo>,</mo><mi>ω</mi><mo>)</mo></mrow></mrow></mrow></semantics></math></inline-formula> has no zeros inside <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi mathvariant="double-struck">D</mi><mo>}</mo></mrow></semantics></math></inline-formula> as <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mo>→</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula> outside of some set <i>E</i> of finite logarithmic measure, i.e., <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mo>∫</mo><mrow><mi>E</mi><mo>∩</mo><mo>[</mo><mn>1</mn><mo>,</mo><mo>+</mo><mo>∞</mo><mo>)</mo></mrow></msub><mi>d</mi><mi>ln</mi><mi>r</mi><mo><</mo><mo>+</mo><mo>∞</mo></mrow></semantics></math></inline-formula>. The obtained asymptotic estimates for the probability of the absence of zeros for entire Gaussian functions are in a certain sense the best possible result. Furthermore, we give an answer to an open question of A. Nishry for such random functions.https://www.mdpi.com/2075-1680/12/3/255Gaussian entire functionsSteinhaus entire functionszeros distribution of random entire functions
spellingShingle Andriy Kuryliak
Oleh Skaskiv
Entire Gaussian Functions: Probability of Zeros Absence
Axioms
Gaussian entire functions
Steinhaus entire functions
zeros distribution of random entire functions
title Entire Gaussian Functions: Probability of Zeros Absence
title_full Entire Gaussian Functions: Probability of Zeros Absence
title_fullStr Entire Gaussian Functions: Probability of Zeros Absence
title_full_unstemmed Entire Gaussian Functions: Probability of Zeros Absence
title_short Entire Gaussian Functions: Probability of Zeros Absence
title_sort entire gaussian functions probability of zeros absence
topic Gaussian entire functions
Steinhaus entire functions
zeros distribution of random entire functions
url https://www.mdpi.com/2075-1680/12/3/255
work_keys_str_mv AT andriykuryliak entiregaussianfunctionsprobabilityofzerosabsence
AT olehskaskiv entiregaussianfunctionsprobabilityofzerosabsence