The addition of wine yeast <i>Starmerella bacillaris</i> to grape skin surface influences must fermentation and glycerol production

Starmerella bacillaris is a non-Saccharomyces yeast recently proposed for grape fermentation in association with Saccharomyces cerevisiae. Due to its high glycerol and moderate volatile acidity production this yeast can contribute to improving wine quality. Some strains have been demonstrated to exh...

Full description

Bibliographic Details
Main Authors: Chiara Nadai, Alessio Giacomini, Viviana Corich
Format: Article
Language:English
Published: International Viticulture and Enology Society 2021-04-01
Series:OENO One
Subjects:
Online Access:https://oeno-one.eu/article/view/4556
Description
Summary:Starmerella bacillaris is a non-Saccharomyces yeast recently proposed for grape fermentation in association with Saccharomyces cerevisiae. Due to its high glycerol and moderate volatile acidity production this yeast can contribute to improving wine quality. Some strains have been demonstrated to exhibit antifungal activity against grey mould on grape, which is caused by Botrytis cinerea. The simultaneous presence of these traits in S. bacillaris is of great interest. Indeed, this yeast can be potentially used as a biocontrol agent in vineyards. Research on the ability of S. bacillaris to survive or, even to grow on the surface of grapes is a starting point in the evaluatation of its potential use in vineyards. The preliminary results of our study showed that when applied to the grape surface under laboratory condictions, inoculum sized S. bacillaris with antifungal activity developed and lasted for at least 6 days in high concentrations. In addition, it positively influenced the fermentation process by producing high concentrations of glycerol (average value 4.89 ± 0.47 g/L). Interestingly, a positive effect on wine quality was also observed when the inoculum size was 10 times higher or lower than the reference concentration. When sprayed on the vines in the vineyard and present on the grape skin surface after harvest, S. bacillaris cells can start alcoholic fermentation.
ISSN:2494-1271