Plants forage for soil patches free of plastic pollution but cannot bag the profits

Abstract Microplastics can affect their surroundings physically and chemically, resulting in diverse effects on plant-soil systems. Similar to other substances (e.g. nutrients and water), microplastics in the environment occur in patches. Such heterogeneous distributions could affect plant responses...

Full description

Bibliographic Details
Main Authors: Benedikt Speißer, Mark van Kleunen
Format: Article
Language:English
Published: Nature Portfolio 2023-10-01
Series:Scientific Reports
Online Access:https://doi.org/10.1038/s41598-023-45662-7
Description
Summary:Abstract Microplastics can affect their surroundings physically and chemically, resulting in diverse effects on plant-soil systems. Similar to other substances (e.g. nutrients and water), microplastics in the environment occur in patches. Such heterogeneous distributions could affect plant responses to plastic pollution. Yet, this has remained untested. We conducted a multispecies experiment including 29 herbaceous plant species and three different microplastic treatments (a control without microplastics, a homogeneous and a heterogeneous microplastic distribution). Based on biomass and root-morphological traits, we assessed how different plastic distributions affect the performance and root-foraging behavior of plants, and whether stronger root foraging is beneficial when microplastics are distributed patchily. Next to general effects on plant productivity and root morphology, we found very strong evidence for root-foraging responses to patchy plastic distributions, with a clear preference for plastic-free patches, resulting in 25% longer roots and 20% more root biomass in the plastic-free patches. Interestingly, however, these foraging responses were correlated with a reduced plant performance, indicating that the benefits of plastic avoidance did not compensate for the associated investments. Our results provide new insights in plant-microplastic interactions and suggest that plants might not just be passively affected by but could also actively respond to environmental plastic pollution.
ISSN:2045-2322