Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i>
In this paper, we analyze local spectral properties of operators <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>,</mo></mrow></semantics></math></inline-formula><i>S</i> and <inlin...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-10-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/9/4/120 |
_version_ | 1797550508502679552 |
---|---|
author | Salvatore Triolo |
author_facet | Salvatore Triolo |
author_sort | Salvatore Triolo |
collection | DOAJ |
description | In this paper, we analyze local spectral properties of operators <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>,</mo></mrow></semantics></math></inline-formula><i>S</i> and <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mi>S</mi></mrow></semantics></math></inline-formula> which satisfy the operator equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>R</mi><mi>n</mi></msup><mi>S</mi><msup><mi>R</mi><mi>n</mi></msup><mo>=</mo><msup><mi>R</mi><mi>j</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msup><mi>S</mi><mi>n</mi></msup><mi>R</mi><msup><mi>S</mi><mi>n</mi></msup><mo>=</mo><msup><mi>S</mi><mi>j</mi></msup></mrow></semantics></math></inline-formula> for same integers <inline-formula><math display="inline"><semantics><mrow><mi>j</mi><mo>≥</mo><mi>n</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> We also continue to study the relationship between the local spectral properties of an operator <i>R</i> and the local spectral properties of <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>.</mo></mrow></semantics></math></inline-formula> Thus, we investigate the transmission of some local spectral properties from <i>R</i> to <i>S</i> and we illustrate our results with an example. The theory is exemplified in some cases. |
first_indexed | 2024-03-10T15:30:19Z |
format | Article |
id | doaj.art-303fbde6b9d64a119537ea0a914528d7 |
institution | Directory Open Access Journal |
issn | 2075-1680 |
language | English |
last_indexed | 2024-03-10T15:30:19Z |
publishDate | 2020-10-01 |
publisher | MDPI AG |
record_format | Article |
series | Axioms |
spelling | doaj.art-303fbde6b9d64a119537ea0a914528d72023-11-20T17:39:53ZengMDPI AGAxioms2075-16802020-10-019412010.3390/axioms9040120Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i>Salvatore Triolo0Dipartimento di Ingegneria, Università di Palermo, Viale delle Scienze, I-90128 Palermo, ItalyIn this paper, we analyze local spectral properties of operators <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mo>,</mo></mrow></semantics></math></inline-formula><i>S</i> and <inline-formula><math display="inline"><semantics><mrow><mi>R</mi><mi>S</mi></mrow></semantics></math></inline-formula> which satisfy the operator equations <inline-formula><math display="inline"><semantics><mrow><msup><mi>R</mi><mi>n</mi></msup><mi>S</mi><msup><mi>R</mi><mi>n</mi></msup><mo>=</mo><msup><mi>R</mi><mi>j</mi></msup></mrow></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mrow><msup><mi>S</mi><mi>n</mi></msup><mi>R</mi><msup><mi>S</mi><mi>n</mi></msup><mo>=</mo><msup><mi>S</mi><mi>j</mi></msup></mrow></semantics></math></inline-formula> for same integers <inline-formula><math display="inline"><semantics><mrow><mi>j</mi><mo>≥</mo><mi>n</mi><mo>≥</mo><mn>0</mn><mo>.</mo></mrow></semantics></math></inline-formula> We also continue to study the relationship between the local spectral properties of an operator <i>R</i> and the local spectral properties of <inline-formula><math display="inline"><semantics><mrow><mi>S</mi><mo>.</mo></mrow></semantics></math></inline-formula> Thus, we investigate the transmission of some local spectral properties from <i>R</i> to <i>S</i> and we illustrate our results with an example. The theory is exemplified in some cases.https://www.mdpi.com/2075-1680/9/4/120local spectral subspacesDunford’s property (<i>C</i>) and property (<i>β</i>)Drazin invertible operators |
spellingShingle | Salvatore Triolo Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> Axioms local spectral subspaces Dunford’s property (<i>C</i>) and property (<i>β</i>) Drazin invertible operators |
title | Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> |
title_full | Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> |
title_fullStr | Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> |
title_full_unstemmed | Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> |
title_short | Local Spectral Theory for <i>R</i> and <i>S</i> Satisfying <i>R<sup>n</sup>SR<sup>n</sup></i> = <i>R<sup>j</sup></i> |
title_sort | local spectral theory for i r i and i s i satisfying i r sup n sup sr sup n sup i i r sup j sup i |
topic | local spectral subspaces Dunford’s property (<i>C</i>) and property (<i>β</i>) Drazin invertible operators |
url | https://www.mdpi.com/2075-1680/9/4/120 |
work_keys_str_mv | AT salvatoretriolo localspectraltheoryfoririandisisatisfyingirsupnsupsrsupnsupiirsupjsupi |