Bifurcation of limit cycles from quartic isochronous systems

This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upp...

Full description

Bibliographic Details
Main Authors: Linping Peng, Zhaosheng Feng
Format: Article
Language:English
Published: Texas State University 2014-04-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2014/95/abstr.html
Description
Summary:This article concerns the bifurcation of limit cycles for a quartic system with an isochronous center. By using the averaging theory, it shows that under any small quartic homogeneous perturbations, at most two limit cycles bifurcate from the period annulus of the considered system, and this upper bound can be reached. In addition, we study a family of perturbed isochronous systems and prove that there are at most three limit cycles bifurcating from the period annulus of the unperturbed one, and the upper bound is sharp.
ISSN:1072-6691