Improved SERS Performance and Catalytic Activity of Dendritic Au/Ag Bimetallic Nanostructures Based on Ag Dendrites

Abstract Bimetallic nanomaterials, which exhibit a combination of the properties associated with two different metals, have enabled innovative applications in nanoscience and nanotechnology. Here, we introduce the fabrication of dendritic Au/Ag bimetallic nanostructures for surface-enhanced Raman sc...

Full description

Bibliographic Details
Main Authors: Zi-Qiang Cheng, Zhi-Wen Li, Rui Yao, Kuang-Wei Xiong, Guang-Ling Cheng, Yan-Hong Zhou, Xin Luo, Zhi-Min Liu
Format: Article
Language:English
Published: SpringerOpen 2020-05-01
Series:Nanoscale Research Letters
Subjects:
Online Access:http://link.springer.com/article/10.1186/s11671-020-03347-4
Description
Summary:Abstract Bimetallic nanomaterials, which exhibit a combination of the properties associated with two different metals, have enabled innovative applications in nanoscience and nanotechnology. Here, we introduce the fabrication of dendritic Au/Ag bimetallic nanostructures for surface-enhanced Raman scattering (SERS) and catalytic applications. The dendritic Au/Ag bimetallic nanostructures were prepared by combining the electrochemical deposition and replacement reaction. The formation of Au nanoparticle shell on the surface of Ag dendrites greatly improves the stability of dendritic nanostructures, followed by a significant SERS enhancement. In addition, these dendritic Au/Ag bimetallic nanostructures are extremely efficient in degrading 4-nitrophenol (4-NP) compared with the initial dendritic Ag nanostructures. These experimental results indicate the great potential of the dendritic Au/Ag bimetallic nanostructures for the development of excellent SERS substrate and highly efficient catalysts.
ISSN:1556-276X