Adsorption of Carbon Dioxide on Mono-Layer Thick Oxidized Samarium Films on Ni(100)

Studies of adsorption of CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> on nanoscopic s...

Full description

Bibliographic Details
Main Author: Steinar Raaen
Format: Article
Language:English
Published: MDPI AG 2021-08-01
Series:Nanomaterials
Subjects:
Online Access:https://www.mdpi.com/2079-4991/11/8/2064
Description
Summary:Studies of adsorption of CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> on nanoscopic surfaces are relevant for technological applications in heterogeneous catalysis as well as for sorption of this important greenhouse gas. Presently, adsorption of carbon dioxide on pure and oxidized thin samarium layers near mono-layer thickness on Ni(100) has been investigated by photoelectron spectroscopy and temperature programmed desorption. It is observed that very little CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> adsorb on the metallic sample for exposures in the vacuum regime at room temperature. For the oxidized sample, a large enhancement in CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> adsorption is observed in the desorption measurements. Indications of carbonate formation on the surface were found by C 1s and O 1s XPS. After annealing of the oxidized samples to 900 K very little CO<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>2</mn></msub></semantics></math></inline-formula> was found to adsorb. Differences in desorption spectra before and after annealing of the oxidized samples are correlated with changes in XPS intensities, and with changes in sample work function which determines the energy difference between molecular orbitals and substrate Fermi level, and thus the probability of charge transfer between adsorbed molecule and substrate.
ISSN:2079-4991