VAWT optimization using genetic algorithm and CST airfoil parameterization

Darrieus type vertical axis wind turbine (VAWT) is optimized using the genetic algorithm (GA). The airfoil shape is parameterized using the Class-Shape Transformation (CST) method. The double multiple stream tube (DMST) method with the Gormont dynamic stall modification is used for the calculation o...

Full description

Bibliographic Details
Main Authors: Ivanov Toni D., Simonović Aleksandar M., Svorcan Jelena S., Peković Ognjen M.
Format: Article
Language:English
Published: University of Belgrade - Faculty of Mechanical Engineering, Belgrade 2017-01-01
Series:FME Transactions
Subjects:
Online Access:https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2017/1451-20921701026I.pdf
_version_ 1818161829518508032
author Ivanov Toni D.
Simonović Aleksandar M.
Svorcan Jelena S.
Peković Ognjen M.
author_facet Ivanov Toni D.
Simonović Aleksandar M.
Svorcan Jelena S.
Peković Ognjen M.
author_sort Ivanov Toni D.
collection DOAJ
description Darrieus type vertical axis wind turbine (VAWT) is optimized using the genetic algorithm (GA). The airfoil shape is parameterized using the Class-Shape Transformation (CST) method. The double multiple stream tube (DMST) method with the Gormont dynamic stall modification is used for the calculation of the VAWT performance parameters. Once the numerical codes are validated using available experimental results, the airfoil parameters are varied as to achieve the optimum value of the genetic algorithm fitness function.
first_indexed 2024-12-11T16:23:59Z
format Article
id doaj.art-305abf24837849b2b1eb6fd874e57e53
institution Directory Open Access Journal
issn 1451-2092
2406-128X
language English
last_indexed 2024-12-11T16:23:59Z
publishDate 2017-01-01
publisher University of Belgrade - Faculty of Mechanical Engineering, Belgrade
record_format Article
series FME Transactions
spelling doaj.art-305abf24837849b2b1eb6fd874e57e532022-12-22T00:58:46ZengUniversity of Belgrade - Faculty of Mechanical Engineering, BelgradeFME Transactions1451-20922406-128X2017-01-0145126311451-20921701026IVAWT optimization using genetic algorithm and CST airfoil parameterizationIvanov Toni D.0Simonović Aleksandar M.1Svorcan Jelena S.2https://orcid.org/0000-0002-6722-2711Peković Ognjen M.3University of Belgrade, Faculty of Mechanical Engineering, Aerospace DepartmentUniversity of Belgrade, Faculty of Mechanical Engineering, Aerospace DepartmentUniversity of Belgrade, Faculty of Mechanical Engineering, Aerospace DepartmentUniversity of Belgrade, Faculty of Mechanical Engineering, Aerospace DepartmentDarrieus type vertical axis wind turbine (VAWT) is optimized using the genetic algorithm (GA). The airfoil shape is parameterized using the Class-Shape Transformation (CST) method. The double multiple stream tube (DMST) method with the Gormont dynamic stall modification is used for the calculation of the VAWT performance parameters. Once the numerical codes are validated using available experimental results, the airfoil parameters are varied as to achieve the optimum value of the genetic algorithm fitness function.https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2017/1451-20921701026I.pdfgenetic-algorithmparameterizationcstvawtdmst
spellingShingle Ivanov Toni D.
Simonović Aleksandar M.
Svorcan Jelena S.
Peković Ognjen M.
VAWT optimization using genetic algorithm and CST airfoil parameterization
FME Transactions
genetic-algorithm
parameterization
cst
vawt
dmst
title VAWT optimization using genetic algorithm and CST airfoil parameterization
title_full VAWT optimization using genetic algorithm and CST airfoil parameterization
title_fullStr VAWT optimization using genetic algorithm and CST airfoil parameterization
title_full_unstemmed VAWT optimization using genetic algorithm and CST airfoil parameterization
title_short VAWT optimization using genetic algorithm and CST airfoil parameterization
title_sort vawt optimization using genetic algorithm and cst airfoil parameterization
topic genetic-algorithm
parameterization
cst
vawt
dmst
url https://scindeks-clanci.ceon.rs/data/pdf/1451-2092/2017/1451-20921701026I.pdf
work_keys_str_mv AT ivanovtonid vawtoptimizationusinggeneticalgorithmandcstairfoilparameterization
AT simonovicaleksandarm vawtoptimizationusinggeneticalgorithmandcstairfoilparameterization
AT svorcanjelenas vawtoptimizationusinggeneticalgorithmandcstairfoilparameterization
AT pekovicognjenm vawtoptimizationusinggeneticalgorithmandcstairfoilparameterization