System-Level Scheduling of Mixed-Criticality Traffics in Avionics Networks

System-level mixed-criticality design aims at reducing production cost and enhancing resource efficiency. This paper studies the technology of integrating mixed-criticality avionics traffics for Avionics Full-Duplex Switched Ethernet (AFDX) network, which can transmit both critical and non-critical...

Full description

Bibliographic Details
Main Authors: Jianguo Yao, Jiahong Wu, Qingchun Liu, Zhiyong Xiong, Guchuan Zhu
Format: Article
Language:English
Published: IEEE 2016-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/7499844/
Description
Summary:System-level mixed-criticality design aims at reducing production cost and enhancing resource efficiency. This paper studies the technology of integrating mixed-criticality avionics traffics for Avionics Full-Duplex Switched Ethernet (AFDX) network, which can transmit both critical and non-critical traffics. These two traffics have different QoS requirements, such as low latency for critical traffics and high bandwidth for non-critical traffics. We use system-level compositional scheduling to integrate mixed-criticality traffics into one network to enhance the scalability of AFDX network. In the architecture of the proposed compositional scheduling, critical traffics are scheduled by bandwidth allocation gap-based scheduler, and non-critical traffics by Round Robin manner. To estimate the delay bound meeting requirements of applications, end-to-end delay for both critical and non-critical traffics are analyzed by using network calculus. Finally, a true time-based simulation of AFDX networks is conducted to verify the effectiveness of the proposed approach.
ISSN:2169-3536