The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules
Specific plant signal molecules are known to induce syringomycin production and expression of syrB1, a syringomycin synthetase gene, in Pseudomonas syringae pv. syringae. This report demonstrates that syringopeptin production likewise is activated by plant signal molecules and that the GacS, SalA, a...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The American Phytopathological Society
2006-03-01
|
Series: | Molecular Plant-Microbe Interactions |
Subjects: | |
Online Access: | https://apsjournals.apsnet.org/doi/10.1094/MPMI-19-0257 |
_version_ | 1818757244183904256 |
---|---|
author | Nian Wang Shi-En Lu Jianlin Wang Z. Jeffrey Chen Dennis C. Gross |
author_facet | Nian Wang Shi-En Lu Jianlin Wang Z. Jeffrey Chen Dennis C. Gross |
author_sort | Nian Wang |
collection | DOAJ |
description | Specific plant signal molecules are known to induce syringomycin production and expression of syrB1, a syringomycin synthetase gene, in Pseudomonas syringae pv. syringae. This report demonstrates that syringopeptin production likewise is activated by plant signal molecules and that the GacS, SalA, and SyrF regulatory pathway mediates transmission of plant signal molecules to the syr-syp biosynthesis apparatus. Syringopeptin production by BR132 was increased twofold by addition of arbutin (100 μM) and D-fructose (0.1%) to syringomycin minimal medium (SRM). Among 10 plant phenolic compounds tested, only the phenolic glucosides arbutin, salicin, and phenyl-β-D-glucopyranoside induced substantially the β-glucuronidase (GUS) activity of a sypA::uidA reporter from 242 U per 108 CFU without plant signal molecules up to 419 U per 108 CFU with plant signal molecules. Syringopeptin production was found to be controlled by the SalA/SyrF regulon because no toxin was detected from cultures of B301DSL7 (i.e., salA mutant) and B301DSL1 (i.e., syrF mutant), and the expression of sypA::uidA was decreased approximately 99 and 94% in salA (B301DSL30) and syrF (B301DNW31) mutant backgrounds, respectively. Subgenomic analysis of transcriptional expression with a 70-mer oligonucleotide microarray demonstrated that the syr-syp genes are induced 2.5- to 10.5-fold by addition of arbutin and D-fructose to SRM. This study establishes that plant signal molecules are transmitted through the GacS, SalA/SyrF pathway to activate the coordinated transcriptional expression of the syr-syp genes. |
first_indexed | 2024-12-18T06:07:51Z |
format | Article |
id | doaj.art-3063ee66b93c4bbfb790e853c42cd78e |
institution | Directory Open Access Journal |
issn | 0894-0282 1943-7706 |
language | English |
last_indexed | 2024-12-18T06:07:51Z |
publishDate | 2006-03-01 |
publisher | The American Phytopathological Society |
record_format | Article |
series | Molecular Plant-Microbe Interactions |
spelling | doaj.art-3063ee66b93c4bbfb790e853c42cd78e2022-12-21T21:18:29ZengThe American Phytopathological SocietyMolecular Plant-Microbe Interactions0894-02821943-77062006-03-0119325726910.1094/MPMI-19-0257The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal MoleculesNian WangShi-En LuJianlin WangZ. Jeffrey ChenDennis C. GrossSpecific plant signal molecules are known to induce syringomycin production and expression of syrB1, a syringomycin synthetase gene, in Pseudomonas syringae pv. syringae. This report demonstrates that syringopeptin production likewise is activated by plant signal molecules and that the GacS, SalA, and SyrF regulatory pathway mediates transmission of plant signal molecules to the syr-syp biosynthesis apparatus. Syringopeptin production by BR132 was increased twofold by addition of arbutin (100 μM) and D-fructose (0.1%) to syringomycin minimal medium (SRM). Among 10 plant phenolic compounds tested, only the phenolic glucosides arbutin, salicin, and phenyl-β-D-glucopyranoside induced substantially the β-glucuronidase (GUS) activity of a sypA::uidA reporter from 242 U per 108 CFU without plant signal molecules up to 419 U per 108 CFU with plant signal molecules. Syringopeptin production was found to be controlled by the SalA/SyrF regulon because no toxin was detected from cultures of B301DSL7 (i.e., salA mutant) and B301DSL1 (i.e., syrF mutant), and the expression of sypA::uidA was decreased approximately 99 and 94% in salA (B301DSL30) and syrF (B301DNW31) mutant backgrounds, respectively. Subgenomic analysis of transcriptional expression with a 70-mer oligonucleotide microarray demonstrated that the syr-syp genes are induced 2.5- to 10.5-fold by addition of arbutin and D-fructose to SRM. This study establishes that plant signal molecules are transmitted through the GacS, SalA/SyrF pathway to activate the coordinated transcriptional expression of the syr-syp genes.https://apsjournals.apsnet.org/doi/10.1094/MPMI-19-0257GacAgenomic islandHrpstimulon |
spellingShingle | Nian Wang Shi-En Lu Jianlin Wang Z. Jeffrey Chen Dennis C. Gross The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules Molecular Plant-Microbe Interactions GacA genomic island Hrp stimulon |
title | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules |
title_full | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules |
title_fullStr | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules |
title_full_unstemmed | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules |
title_short | The Expression of Genes Encoding Lipodepsipeptide Phytotoxins by Pseudomonas syringae pv. syringae Is Coordinated in Response to Plant Signal Molecules |
title_sort | expression of genes encoding lipodepsipeptide phytotoxins by pseudomonas syringae pv syringae is coordinated in response to plant signal molecules |
topic | GacA genomic island Hrp stimulon |
url | https://apsjournals.apsnet.org/doi/10.1094/MPMI-19-0257 |
work_keys_str_mv | AT nianwang theexpressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT shienlu theexpressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT jianlinwang theexpressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT zjeffreychen theexpressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT denniscgross theexpressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT nianwang expressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT shienlu expressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT jianlinwang expressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT zjeffreychen expressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules AT denniscgross expressionofgenesencodinglipodepsipeptidephytotoxinsbypseudomonassyringaepvsyringaeiscoordinatedinresponsetoplantsignalmolecules |