Electrocatalytic Oxidation of Ascorbic Acid Using a Poly(aniline-co-m-ferrocenylaniline) Modified Glassy Carbon Electrode

A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from −0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyanili...

Full description

Bibliographic Details
Main Authors: Ekasith Somsook, Maliwan Amatatongchai, Sanoe Chairam, Worawit Sriraksa
Format: Article
Language:English
Published: MDPI AG 2011-10-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/11/11/10166/
Description
Summary:A poly(aniline-co-m-ferrocenylaniline) was successfully synthesized on a glassy carbon electrode (GCE) by electrochemical copolymerization using a scan potential range from −0.3 to +0.9 V (vs. Ag/AgCl) in 0.5 M H2SO4 containing 30% acetonitrile (ACN), 0.1 M aniline (Ani) and 0.005 M m-ferrocenyaniline (m-FcAni). The field emission scanning electron microscope (FESEM) and electrochemical methods were used to characterize the poly(Ani-co-m-FcAni) modified electrode. The poly(Ani-co-m-FcAni)/GCE exhibited excellent electrocatalytic oxidation of ascorbic acid (AA) in citrate buffer solution (CBS, pH 5.0). The anodic peak potential of AA was shifted from +0.55 V at the bare GCE to +0.25 V at the poly(Ani-co-m-FcAni)/GCE with higher current responses than those seen on the bare GCE. The scan number at the 10th cycle was selected as the maximum scan cycle in electrochemical polymerization. The limit of detection (LOD) was estimated to be 2.0 mM based on the signal-to-noise ratio (S/N = 3). The amperometric responses demonstrated an excellent selectivity for AA determination over glucose (Glu) and dopamine (DA).
ISSN:1424-8220