MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES
The main objective of this study was the management of corn stalk waste as reinforcement for polypropylene (PP) injection moulded composites as an alternative to wood flour and fibers. In the first step, corn stalk waste was subjected to various treatments, and four different corn stalk derivatives...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2012-02-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_2_1836_Flandez_GREVM_Corn_Stalk_Waste_PP_Composites/1464 |
_version_ | 1818257380607000576 |
---|---|
author | Jirleska Flandez, Israel González, Jordi Bayer Resplandis, Nour Eddine El Mansouri, Fabiola Vilaseca, Pere Mutjé |
author_facet | Jirleska Flandez, Israel González, Jordi Bayer Resplandis, Nour Eddine El Mansouri, Fabiola Vilaseca, Pere Mutjé |
author_sort | Jirleska Flandez, |
collection | DOAJ |
description | The main objective of this study was the management of corn stalk waste as reinforcement for polypropylene (PP) injection moulded composites as an alternative to wood flour and fibers. In the first step, corn stalk waste was subjected to various treatments, and four different corn stalk derivatives (flour and fibers) able to be used as reinforcement of composite materials were prepared and characterized. These derivatives are corn stalk flour, thermo-mechanical, semi-chemical, and chemical fibers. They were characterized in terms of their yield, lignin content, Kappa number, fiber length/diameter ratio, fines, coarseness, viscosity, and the length at the break of a standard sheet of paper. Results showed that the corn stalk derivatives have different physico-chemical properties. In the second step, the prepared flour and fibers were explored as a reinforcing element for PP composites. Coupled and non-coupled PP composites were prepared and tested for tensile properties. For overall trend, with the addition of a coupling agent, tensile properties of composites significantly improved, as compared with non-coupled samples. In addition, a morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The composites prepared with semichemical fiber gave better results in comparison with the rest of the corn stalk derivatives due to its chemical characteristics. |
first_indexed | 2024-12-12T17:42:44Z |
format | Article |
id | doaj.art-306ce41740204219b4db82c01d94a985 |
institution | Directory Open Access Journal |
issn | 1930-2126 |
language | English |
last_indexed | 2024-12-12T17:42:44Z |
publishDate | 2012-02-01 |
publisher | North Carolina State University |
record_format | Article |
series | BioResources |
spelling | doaj.art-306ce41740204219b4db82c01d94a9852022-12-22T00:17:01ZengNorth Carolina State UniversityBioResources1930-21262012-02-017218361849MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITESJirleska Flandez,Israel González,Jordi Bayer Resplandis,Nour Eddine El Mansouri,Fabiola Vilaseca,Pere MutjéThe main objective of this study was the management of corn stalk waste as reinforcement for polypropylene (PP) injection moulded composites as an alternative to wood flour and fibers. In the first step, corn stalk waste was subjected to various treatments, and four different corn stalk derivatives (flour and fibers) able to be used as reinforcement of composite materials were prepared and characterized. These derivatives are corn stalk flour, thermo-mechanical, semi-chemical, and chemical fibers. They were characterized in terms of their yield, lignin content, Kappa number, fiber length/diameter ratio, fines, coarseness, viscosity, and the length at the break of a standard sheet of paper. Results showed that the corn stalk derivatives have different physico-chemical properties. In the second step, the prepared flour and fibers were explored as a reinforcing element for PP composites. Coupled and non-coupled PP composites were prepared and tested for tensile properties. For overall trend, with the addition of a coupling agent, tensile properties of composites significantly improved, as compared with non-coupled samples. In addition, a morphological study revealed the positive effect of the coupling agent on the interfacial bonding. The composites prepared with semichemical fiber gave better results in comparison with the rest of the corn stalk derivatives due to its chemical characteristics.http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_2_1836_Flandez_GREVM_Corn_Stalk_Waste_PP_Composites/1464Corn stalksAgricultural wastesBiocompositesNatural fibersPolypropylene |
spellingShingle | Jirleska Flandez, Israel González, Jordi Bayer Resplandis, Nour Eddine El Mansouri, Fabiola Vilaseca, Pere Mutjé MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES BioResources Corn stalks Agricultural wastes Biocomposites Natural fibers Polypropylene |
title | MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES |
title_full | MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES |
title_fullStr | MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES |
title_full_unstemmed | MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES |
title_short | MANAGEMENT OF CORN STALK WASTE AS REINFORCEMENT FOR POLYPROPYLENE INJECTION MOULDED COMPOSITES |
title_sort | management of corn stalk waste as reinforcement for polypropylene injection moulded composites |
topic | Corn stalks Agricultural wastes Biocomposites Natural fibers Polypropylene |
url | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_07_2_1836_Flandez_GREVM_Corn_Stalk_Waste_PP_Composites/1464 |
work_keys_str_mv | AT jirleskaflandez managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites AT israelgonzalez managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites AT jordibayerresplandis managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites AT noureddineelmansouri managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites AT fabiolavilaseca managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites AT peremutje managementofcornstalkwasteasreinforcementforpolypropyleneinjectionmouldedcomposites |