WTS: A Weakly towards Strongly Supervised Learning Framework for Remote Sensing Land Cover Classification Using Segmentation Models
Land cover classification is one of the most fundamental tasks in the field of remote sensing. In recent years, fully supervised fully convolutional network (FCN)-based semantic segmentation models have achieved state-of-the-art performance in the semantic segmentation task. However, creating pixel-...
Үндсэн зохиолчид: | Wei Zhang, Ping Tang, Thomas Corpetti, Lijun Zhao |
---|---|
Формат: | Өгүүллэг |
Хэл сонгох: | English |
Хэвлэсэн: |
MDPI AG
2021-01-01
|
Цуврал: | Remote Sensing |
Нөхцлүүд: | |
Онлайн хандалт: | https://www.mdpi.com/2072-4292/13/3/394 |
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Cattle Weight Estimation Using Fully and Weakly Supervised Segmentation from 2D Images
-н: Chang-bok Lee, зэрэг
Хэвлэсэн: (2023-02-01) -
On the Effectiveness of Weakly Supervised Semantic Segmentation for Building Extraction From High-Resolution Remote Sensing Imagery
-н: Zhenshi Li, зэрэг
Хэвлэсэн: (2021-01-01) -
Weakly Supervised Deep Learning for Segmentation of Remote Sensing Imagery
-н: Sherrie Wang, зэрэг
Хэвлэсэн: (2020-01-01) -
Learning graph structures with transformer for weakly supervised semantic segmentation
-н: Wanchun Sun, зэрэг
Хэвлэсэн: (2023-07-01) -
Extracting Structured Supervision From Captions for Weakly Supervised Semantic Segmentation
-н: Daniel R. Vilar, зэрэг
Хэвлэсэн: (2021-01-01)