Information Length Analysis of Linear Autonomous Stochastic Processes

When studying the behaviour of complex dynamical systems, a statistical formulation can provide useful insights. In particular, information geometry is a promising tool for this purpose. In this paper, we investigate the information length for <i>n</i>-dimensional linear autonomous stoch...

Full description

Bibliographic Details
Main Authors: Adrian-Josue Guel-Cortez, Eun-jin Kim
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/11/1265
_version_ 1797548535703404544
author Adrian-Josue Guel-Cortez
Eun-jin Kim
author_facet Adrian-Josue Guel-Cortez
Eun-jin Kim
author_sort Adrian-Josue Guel-Cortez
collection DOAJ
description When studying the behaviour of complex dynamical systems, a statistical formulation can provide useful insights. In particular, information geometry is a promising tool for this purpose. In this paper, we investigate the information length for <i>n</i>-dimensional linear autonomous stochastic processes, providing a basic theoretical framework that can be applied to a large set of problems in engineering and physics. A specific application is made to a harmonically bound particle system with the natural oscillation frequency <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>, subject to a damping <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> and a Gaussian white-noise. We explore how the information length depends on <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, elucidating the role of critical damping <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>2</mn><mi>ω</mi></mrow></semantics></math></inline-formula> in information geometry. Furthermore, in the long time limit, we show that the information length reflects the linear geometry associated with the Gaussian statistics in a linear stochastic process.
first_indexed 2024-03-10T15:01:55Z
format Article
id doaj.art-30821139aabb497fba017354d9a41900
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-03-10T15:01:55Z
publishDate 2020-11-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-30821139aabb497fba017354d9a419002023-11-20T20:07:09ZengMDPI AGEntropy1099-43002020-11-012211126510.3390/e22111265Information Length Analysis of Linear Autonomous Stochastic ProcessesAdrian-Josue Guel-Cortez0Eun-jin Kim1Centre for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UKCentre for Fluid and Complex Systems, Coventry University, Priory St, Coventry CV1 5FB, UKWhen studying the behaviour of complex dynamical systems, a statistical formulation can provide useful insights. In particular, information geometry is a promising tool for this purpose. In this paper, we investigate the information length for <i>n</i>-dimensional linear autonomous stochastic processes, providing a basic theoretical framework that can be applied to a large set of problems in engineering and physics. A specific application is made to a harmonically bound particle system with the natural oscillation frequency <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula>, subject to a damping <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula> and a Gaussian white-noise. We explore how the information length depends on <inline-formula><math display="inline"><semantics><mi>ω</mi></semantics></math></inline-formula> and <inline-formula><math display="inline"><semantics><mi>γ</mi></semantics></math></inline-formula>, elucidating the role of critical damping <inline-formula><math display="inline"><semantics><mrow><mi>γ</mi><mo>=</mo><mn>2</mn><mi>ω</mi></mrow></semantics></math></inline-formula> in information geometry. Furthermore, in the long time limit, we show that the information length reflects the linear geometry associated with the Gaussian statistics in a linear stochastic process.https://www.mdpi.com/1099-4300/22/11/1265non-equilibriumstochastic processestime-dependent PDFinformation lengthinformation geometryentropy
spellingShingle Adrian-Josue Guel-Cortez
Eun-jin Kim
Information Length Analysis of Linear Autonomous Stochastic Processes
Entropy
non-equilibrium
stochastic processes
time-dependent PDF
information length
information geometry
entropy
title Information Length Analysis of Linear Autonomous Stochastic Processes
title_full Information Length Analysis of Linear Autonomous Stochastic Processes
title_fullStr Information Length Analysis of Linear Autonomous Stochastic Processes
title_full_unstemmed Information Length Analysis of Linear Autonomous Stochastic Processes
title_short Information Length Analysis of Linear Autonomous Stochastic Processes
title_sort information length analysis of linear autonomous stochastic processes
topic non-equilibrium
stochastic processes
time-dependent PDF
information length
information geometry
entropy
url https://www.mdpi.com/1099-4300/22/11/1265
work_keys_str_mv AT adrianjosueguelcortez informationlengthanalysisoflinearautonomousstochasticprocesses
AT eunjinkim informationlengthanalysisoflinearautonomousstochasticprocesses