Suppression of Sulfate-Induced Expansion with Lime–Silica Fume Blends

Sulfate-induced expansion resulting from the formation of ettringite in sulfate-bearing soil stabilised with calcium-based stabilisers is a problematic issue with technical and economic implications. Thus, this research examines the viability of the co-addition of lime (L) and silica fume (S) at var...

Full description

Bibliographic Details
Main Authors: Mansour Ebailila, John Kinuthia, Jonathan Oti
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/8/2821
Description
Summary:Sulfate-induced expansion resulting from the formation of ettringite in sulfate-bearing soil stabilised with calcium-based stabilisers is a problematic issue with technical and economic implications. Thus, this research examines the viability of the co-addition of lime (L) and silica fume (S) at varying binder dosages (4, 6, and 10 wt%), with a view of establishing the optimum blend of L–S for suppressing the ettringite-induced expansion of artificially high sulfate-dosed soil (kaolinite-K and gypsum-G). To do so, a series of laboratory specimens, designed using different gypsum and lime concentrations, were investigated using unconfined compression strength (UCS), linear expansion, and derivative thermo-gravimetric analysis (DTG) as the main criteria for the examination. The research outcomes indicated that the increasing substitution of L with S induces a gradual reduction on the UCS and linear expansion at binder levels of 4 and 6 wt%, while its usage in a high binder level (10 wt%), can yield an expansion reduction, with no compromise on the UCS performance. Therefore, silica fume has the potential for restricting ettringite formation and suppressing the expansion, of which 3L7S is the optimum blending ratio for suppressing the expansion.
ISSN:1996-1944