Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept

Compared to conventional manufacturing, additive manufacturing (AM) of radio frequency (RF) cavities has the potential to reduce manufacturing costs and complexity and to enable higher performance. This work evaluates whether normal conducting side-coupled linac structures (SCCL), used worldwide for...

Full description

Bibliographic Details
Main Authors: Michael Mayerhofer, Stefan Brenner, Ricardo Helm, Samira Gruber, Elena Lopez, Lukas Stepien, Gerald Gold, Günther Dollinger
Format: Article
Language:English
Published: MDPI AG 2023-12-01
Series:Instruments
Subjects:
Online Access:https://www.mdpi.com/2410-390X/7/4/56
_version_ 1797380596766343168
author Michael Mayerhofer
Stefan Brenner
Ricardo Helm
Samira Gruber
Elena Lopez
Lukas Stepien
Gerald Gold
Günther Dollinger
author_facet Michael Mayerhofer
Stefan Brenner
Ricardo Helm
Samira Gruber
Elena Lopez
Lukas Stepien
Gerald Gold
Günther Dollinger
author_sort Michael Mayerhofer
collection DOAJ
description Compared to conventional manufacturing, additive manufacturing (AM) of radio frequency (RF) cavities has the potential to reduce manufacturing costs and complexity and to enable higher performance. This work evaluates whether normal conducting side-coupled linac structures (SCCL), used worldwide for a wide range of applications, can benefit from AM. A unit cell geometry (SC) optimized for 75 MeV protons was developed. Downskins with small downskin angles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> were avoided to enable manufacturing by laser powder bed fusion without support structures. SCs with different <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> were printed and post-processed by Hirtisation (R) (an electrochemical process) to minimize surface roughness. The required accuracy for 3 GHz SCCL (medical linacs) is achieved only for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><msup><mn>45</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>. After a material removal of 140 µm due to Hirtisation (R), a quality factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> of 6650 was achieved. This corresponds to 75% of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> simulated by CST<sup>®</sup>. A 3 GHz SCCL concept consisting of 31 SCs was designed. The effective shunt impedance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> simulated by CST corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>60.13</mn><mspace width="3.33333pt"></mspace><mfrac><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">Ω</mi></mrow><mi mathvariant="normal">m</mi></mfrac></mrow></semantics></math></inline-formula> and is comparable to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> of SCCL in use. The reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> expected after Hirtisation (R) can be justified in practice by up to 70% lower manufacturing costs. However, future studies will be conducted to further increase <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula>.
first_indexed 2024-03-08T20:39:37Z
format Article
id doaj.art-3098ddcd81904f039fefc322abed5b9a
institution Directory Open Access Journal
issn 2410-390X
language English
last_indexed 2024-03-08T20:39:37Z
publishDate 2023-12-01
publisher MDPI AG
record_format Article
series Instruments
spelling doaj.art-3098ddcd81904f039fefc322abed5b9a2023-12-22T14:16:26ZengMDPI AGInstruments2410-390X2023-12-01745610.3390/instruments7040056Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First ConceptMichael Mayerhofer0Stefan Brenner1Ricardo Helm2Samira Gruber3Elena Lopez4Lukas Stepien5Gerald Gold6Günther Dollinger7Institute for Applied Physics and Measurement Technology (LRT2), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, GermanyInstitute for Applied Physics and Measurement Technology (LRT2), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, GermanyInstitute for Applied Physics and Measurement Technology (LRT2), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, GermanyFraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstraße 28, 01277 Dresden, GermanyFraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstraße 28, 01277 Dresden, GermanyFraunhofer-Institut für Werkstoff- und Strahltechnik IWS, Winterbergstraße 28, 01277 Dresden, GermanyInstitute of Microwaves and Photonics (LHFT), Friedrich-Alexander Universität Erlangen–Nürnberg (FAU), Schloßplatz 4, 91054 Erlangen, GermanyInstitute for Applied Physics and Measurement Technology (LRT2), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg, GermanyCompared to conventional manufacturing, additive manufacturing (AM) of radio frequency (RF) cavities has the potential to reduce manufacturing costs and complexity and to enable higher performance. This work evaluates whether normal conducting side-coupled linac structures (SCCL), used worldwide for a wide range of applications, can benefit from AM. A unit cell geometry (SC) optimized for 75 MeV protons was developed. Downskins with small downskin angles <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> were avoided to enable manufacturing by laser powder bed fusion without support structures. SCs with different <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>α</mi></semantics></math></inline-formula> were printed and post-processed by Hirtisation (R) (an electrochemical process) to minimize surface roughness. The required accuracy for 3 GHz SCCL (medical linacs) is achieved only for <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>α</mi><mo>></mo><msup><mn>45</mn><mo>∘</mo></msup></mrow></semantics></math></inline-formula>. After a material removal of 140 µm due to Hirtisation (R), a quality factor <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> of 6650 was achieved. This corresponds to 75% of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula> simulated by CST<sup>®</sup>. A 3 GHz SCCL concept consisting of 31 SCs was designed. The effective shunt impedance <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> simulated by CST corresponds to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>60.13</mn><mspace width="3.33333pt"></mspace><mfrac><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">Ω</mi></mrow><mi mathvariant="normal">m</mi></mfrac></mrow></semantics></math></inline-formula> and is comparable to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> of SCCL in use. The reduction in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Z</mi><msup><mi>T</mi><mn>2</mn></msup></mrow></semantics></math></inline-formula> expected after Hirtisation (R) can be justified in practice by up to 70% lower manufacturing costs. However, future studies will be conducted to further increase <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Q</mi><mn>0</mn></msub></semantics></math></inline-formula>.https://www.mdpi.com/2410-390X/7/4/56additive manufacturingcavitylinac3D printingside-coupled cavity linacpure copper
spellingShingle Michael Mayerhofer
Stefan Brenner
Ricardo Helm
Samira Gruber
Elena Lopez
Lukas Stepien
Gerald Gold
Günther Dollinger
Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
Instruments
additive manufacturing
cavity
linac
3D printing
side-coupled cavity linac
pure copper
title Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
title_full Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
title_fullStr Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
title_full_unstemmed Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
title_short Additive Manufacturing of Side-Coupled Cavity Linac Structures from Pure Copper: A First Concept
title_sort additive manufacturing of side coupled cavity linac structures from pure copper a first concept
topic additive manufacturing
cavity
linac
3D printing
side-coupled cavity linac
pure copper
url https://www.mdpi.com/2410-390X/7/4/56
work_keys_str_mv AT michaelmayerhofer additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT stefanbrenner additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT ricardohelm additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT samiragruber additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT elenalopez additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT lukasstepien additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT geraldgold additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept
AT guntherdollinger additivemanufacturingofsidecoupledcavitylinacstructuresfrompurecopperafirstconcept