Physiological control on carbon isotope fractionation in marine phytoplankton

<p>One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (<span class="inline-formula"><i>ε</i><sub>p</sub>)</span> in p...

Full description

Bibliographic Details
Main Authors: K. M. Brandenburg, B. Rost, D. B. Van de Waal, M. Hoins, A. Sluijs
Format: Article
Language:English
Published: Copernicus Publications 2022-07-01
Series:Biogeosciences
Online Access:https://bg.copernicus.org/articles/19/3305/2022/bg-19-3305-2022.pdf
_version_ 1818474832933683200
author K. M. Brandenburg
B. Rost
B. Rost
D. B. Van de Waal
M. Hoins
M. Hoins
A. Sluijs
author_facet K. M. Brandenburg
B. Rost
B. Rost
D. B. Van de Waal
M. Hoins
M. Hoins
A. Sluijs
author_sort K. M. Brandenburg
collection DOAJ
description <p>One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (<span class="inline-formula"><i>ε</i><sub>p</sub>)</span> in phytoplankton in response to changing CO<span class="inline-formula"><sub>2</sub></span> concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO<span class="inline-formula"><sub>2</sub></span> levels. Phytoplankton organic carbon is depleted in <span class="inline-formula"><sup>13</sup></span>C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO<span class="inline-formula"><sub>2</sub></span> concentrations [CO<span class="inline-formula"><sub>2</sub></span>] on <span class="inline-formula"><i>ε</i><sub>p</sub></span>. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in <span class="inline-formula"><i>ε</i><sub>p</sub></span> for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="880d1b22cfae9b4167ff115d05c6894c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-3305-2022-ie00001.svg" width="8pt" height="14pt" src="bg-19-3305-2022-ie00001.png"/></svg:svg></span></span> [CO<span class="inline-formula"><sub>2</sub></span>]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in <span class="inline-formula"><i>ε</i><sub>p</sub></span> between studies, although day length was an important predictor for <span class="inline-formula"><i>ε</i><sub>p</sub></span> in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments.</p>
first_indexed 2024-04-14T04:41:31Z
format Article
id doaj.art-30bb698612244cd883ca8683c6a0d77f
institution Directory Open Access Journal
issn 1726-4170
1726-4189
language English
last_indexed 2024-04-14T04:41:31Z
publishDate 2022-07-01
publisher Copernicus Publications
record_format Article
series Biogeosciences
spelling doaj.art-30bb698612244cd883ca8683c6a0d77f2022-12-22T02:11:37ZengCopernicus PublicationsBiogeosciences1726-41701726-41892022-07-01193305331510.5194/bg-19-3305-2022Physiological control on carbon isotope fractionation in marine phytoplanktonK. M. Brandenburg0B. Rost1B. Rost2D. B. Van de Waal3M. Hoins4M. Hoins5A. Sluijs6Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the NetherlandsDepartment of Marine Biogeoscience, Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyFaculty of Biology/Chemistry, University of Bremen, Leobener Strasse, 28359 Bremen, GermanyDepartment of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, the NetherlandsDepartment of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the NetherlandsDepartment of Marine Biogeoscience, Alfred Wegener Institute (AWI), Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, GermanyDepartment of Earth Sciences, Faculty of Geosciences, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, the Netherlands<p>One of the great challenges in biogeochemical research over the past half a century has been to quantify and understand the mechanisms underlying stable carbon isotope fractionation (<span class="inline-formula"><i>ε</i><sub>p</sub>)</span> in phytoplankton in response to changing CO<span class="inline-formula"><sub>2</sub></span> concentrations. This interest is partly grounded in the use of fossil photosynthetic organism remains as a proxy for past atmospheric CO<span class="inline-formula"><sub>2</sub></span> levels. Phytoplankton organic carbon is depleted in <span class="inline-formula"><sup>13</sup></span>C compared to its source because of kinetic fractionation by the enzyme RubisCO during photosynthetic carbon fixation, as well as through physiological pathways upstream of RubisCO. Moreover, other factors such as nutrient limitation, variations in light regime as well as phytoplankton culturing systems and inorganic carbon manipulation approaches may confound the influence of aquatic CO<span class="inline-formula"><sub>2</sub></span> concentrations [CO<span class="inline-formula"><sub>2</sub></span>] on <span class="inline-formula"><i>ε</i><sub>p</sub></span>. Here, based on experimental data compiled from the literature, we assess which underlying physiological processes cause the observed differences in <span class="inline-formula"><i>ε</i><sub>p</sub></span> for various phytoplankton groups in response to C-demand/C-supply, i.e., particulate organic carbon (POC) production <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M9" display="inline" overflow="scroll" dspmath="mathml"><mo>/</mo></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="8pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="880d1b22cfae9b4167ff115d05c6894c"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="bg-19-3305-2022-ie00001.svg" width="8pt" height="14pt" src="bg-19-3305-2022-ie00001.png"/></svg:svg></span></span> [CO<span class="inline-formula"><sub>2</sub></span>]) and test potential confounding factors. Culturing approaches and methods of carbonate chemistry manipulation were found to best explain the differences in <span class="inline-formula"><i>ε</i><sub>p</sub></span> between studies, although day length was an important predictor for <span class="inline-formula"><i>ε</i><sub>p</sub></span> in haptophytes. Extrapolating results from culturing experiments to natural environments and for proxy applications therefore require caution, and it should be carefully considered whether culture methods and experimental conditions are representative of natural environments.</p>https://bg.copernicus.org/articles/19/3305/2022/bg-19-3305-2022.pdf
spellingShingle K. M. Brandenburg
B. Rost
B. Rost
D. B. Van de Waal
M. Hoins
M. Hoins
A. Sluijs
Physiological control on carbon isotope fractionation in marine phytoplankton
Biogeosciences
title Physiological control on carbon isotope fractionation in marine phytoplankton
title_full Physiological control on carbon isotope fractionation in marine phytoplankton
title_fullStr Physiological control on carbon isotope fractionation in marine phytoplankton
title_full_unstemmed Physiological control on carbon isotope fractionation in marine phytoplankton
title_short Physiological control on carbon isotope fractionation in marine phytoplankton
title_sort physiological control on carbon isotope fractionation in marine phytoplankton
url https://bg.copernicus.org/articles/19/3305/2022/bg-19-3305-2022.pdf
work_keys_str_mv AT kmbrandenburg physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT brost physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT brost physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT dbvandewaal physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT mhoins physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT mhoins physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton
AT asluijs physiologicalcontroloncarbonisotopefractionationinmarinephytoplankton