Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system

In this paper, we study the following kind of Schrödinger-Poisson system in $ { \mathbb{R}}^{2} $ $ \begin{equation*} \left\{\begin{array}{ll} -\Delta u+V(x)u+\phi u = K(x)f(u), \ \ \ x\in{ \mathbb{R}}^{2}, \\ \Delta \phi = u^{2}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \...

Full description

Bibliographic Details
Main Authors: Qiongfen Zhang, Kai Chen, Shuqin Liu, Jinmei Fan
Format: Article
Language:English
Published: AIMS Press 2021-05-01
Series:AIMS Mathematics
Subjects:
Online Access:http://www.aimspress.com/article/doi/10.3934/math.2021455?viewType=HTML
_version_ 1818766418779308032
author Qiongfen Zhang
Kai Chen
Shuqin Liu
Jinmei Fan
author_facet Qiongfen Zhang
Kai Chen
Shuqin Liu
Jinmei Fan
author_sort Qiongfen Zhang
collection DOAJ
description In this paper, we study the following kind of Schrödinger-Poisson system in $ { \mathbb{R}}^{2} $ $ \begin{equation*} \left\{\begin{array}{ll} -\Delta u+V(x)u+\phi u = K(x)f(u), \ \ \ x\in{ \mathbb{R}}^{2}, \\ \Delta \phi = u^{2}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in{ \mathbb{R}}^{2}, \end{array}\right. \end{equation*} $ where $ f\in C({ \mathbb{R}}, { \mathbb{R}}) $, $ V(x) $ and $ K(x) $ are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.
first_indexed 2024-12-18T08:33:41Z
format Article
id doaj.art-30db96b7deec483e8d3139da24e7df34
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-18T08:33:41Z
publishDate 2021-05-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-30db96b7deec483e8d3139da24e7df342022-12-21T21:14:23ZengAIMS PressAIMS Mathematics2473-69882021-05-01677833784410.3934/math.2021455Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson systemQiongfen Zhang0Kai Chen1Shuqin Liu2Jinmei Fan 31. School of Science, Guilin University of Technology, Guilin, Guangxi 541004, China2. School of Science, Guilin University of Aerospace Technology, Guilin, Guangxi 541004, China1. School of Science, Guilin University of Technology, Guilin, Guangxi 541004, China1. School of Science, Guilin University of Technology, Guilin, Guangxi 541004, ChinaIn this paper, we study the following kind of Schrödinger-Poisson system in $ { \mathbb{R}}^{2} $ $ \begin{equation*} \left\{\begin{array}{ll} -\Delta u+V(x)u+\phi u = K(x)f(u), \ \ \ x\in{ \mathbb{R}}^{2}, \\ \Delta \phi = u^{2}, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ x\in{ \mathbb{R}}^{2}, \end{array}\right. \end{equation*} $ where $ f\in C({ \mathbb{R}}, { \mathbb{R}}) $, $ V(x) $ and $ K(x) $ are both axially symmetric functions. By constructing a new variational framework and using some new analytic techniques, we obtain an axially symmetric solution for the above planar system. Our result improves and extends the existing works.http://www.aimspress.com/article/doi/10.3934/math.2021455?viewType=HTMLexistenceaxially symmetricground state solutionlogarithmic convolution potentialplanar schrödinger-poisson system
spellingShingle Qiongfen Zhang
Kai Chen
Shuqin Liu
Jinmei Fan
Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
AIMS Mathematics
existence
axially symmetric
ground state solution
logarithmic convolution potential
planar schrödinger-poisson system
title Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
title_full Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
title_fullStr Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
title_full_unstemmed Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
title_short Existence of axially symmetric solutions for a kind of planar Schrödinger-Poisson system
title_sort existence of axially symmetric solutions for a kind of planar schrodinger poisson system
topic existence
axially symmetric
ground state solution
logarithmic convolution potential
planar schrödinger-poisson system
url http://www.aimspress.com/article/doi/10.3934/math.2021455?viewType=HTML
work_keys_str_mv AT qiongfenzhang existenceofaxiallysymmetricsolutionsforakindofplanarschrodingerpoissonsystem
AT kaichen existenceofaxiallysymmetricsolutionsforakindofplanarschrodingerpoissonsystem
AT shuqinliu existenceofaxiallysymmetricsolutionsforakindofplanarschrodingerpoissonsystem
AT jinmeifan existenceofaxiallysymmetricsolutionsforakindofplanarschrodingerpoissonsystem