CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (EC...
Main Authors: | , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2016-12-01
|
Series: | PLoS Pathogens |
Online Access: | https://doi.org/10.1371/journal.ppat.1006022 |
_version_ | 1819020520686878720 |
---|---|
author | Phillip A Swanson Geoffrey T Hart Matthew V Russo Debasis Nayak Takele Yazew Mirna Peña Shahid M Khan Chris J Janse Susan K Pierce Dorian B McGavern |
author_facet | Phillip A Swanson Geoffrey T Hart Matthew V Russo Debasis Nayak Takele Yazew Mirna Peña Shahid M Khan Chris J Janse Susan K Pierce Dorian B McGavern |
author_sort | Phillip A Swanson |
collection | DOAJ |
description | Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature. |
first_indexed | 2024-12-21T03:52:31Z |
format | Article |
id | doaj.art-30e0a5db71954eaaaaa4183b12a00b93 |
institution | Directory Open Access Journal |
issn | 1553-7366 1553-7374 |
language | English |
last_indexed | 2024-12-21T03:52:31Z |
publishDate | 2016-12-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Pathogens |
spelling | doaj.art-30e0a5db71954eaaaaa4183b12a00b932022-12-21T19:16:56ZengPublic Library of Science (PLoS)PLoS Pathogens1553-73661553-73742016-12-011212e100602210.1371/journal.ppat.1006022CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature.Phillip A SwansonGeoffrey T HartMatthew V RussoDebasis NayakTakele YazewMirna PeñaShahid M KhanChris J JanseSusan K PierceDorian B McGavernCerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that results in thousands of deaths each year, mostly in African children. The in vivo mechanisms underlying this fatal condition are not entirely understood. Using the animal model of experimental cerebral malaria (ECM), we sought mechanistic insights into the pathogenesis of CM. Fatal disease was associated with alterations in tight junction proteins, vascular breakdown in the meninges / parenchyma, edema, and ultimately neuronal cell death in the brainstem, which is consistent with cerebral herniation as a cause of death. At the peak of ECM, we revealed using intravital two-photon microscopy that myelomonocytic cells and parasite-specific CD8+ T cells associated primarily with the luminal surface of CNS blood vessels. Myelomonocytic cells participated in the removal of parasitized red blood cells (pRBCs) from cerebral blood vessels, but were not required for the disease. Interestingly, the majority of disease-inducing parasite-specific CD8+ T cells interacted with the lumen of brain vascular endothelial cells (ECs), where they were observed surveying, dividing, and arresting in a cognate peptide-MHC I dependent manner. These activities were critically dependent on IFN-γ, which was responsible for activating cerebrovascular ECs to upregulate adhesion and antigen-presenting molecules. Importantly, parasite-specific CD8+ T cell interactions with cerebral vessels were impaired in chimeric mice rendered unable to present EC antigens on MHC I, and these mice were in turn resistant to fatal brainstem pathology. Moreover, anti-adhesion molecule (LFA-1 / VLA-4) therapy prevented fatal disease by rapidly displacing luminal CD8+ T cells from cerebrovascular ECs without affecting extravascular T cells. These in vivo data demonstrate that parasite-specific CD8+ T cell-induced fatal vascular breakdown and subsequent neuronal death during ECM is associated with luminal, antigen-dependent interactions with cerebrovasculature.https://doi.org/10.1371/journal.ppat.1006022 |
spellingShingle | Phillip A Swanson Geoffrey T Hart Matthew V Russo Debasis Nayak Takele Yazew Mirna Peña Shahid M Khan Chris J Janse Susan K Pierce Dorian B McGavern CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. PLoS Pathogens |
title | CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. |
title_full | CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. |
title_fullStr | CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. |
title_full_unstemmed | CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. |
title_short | CD8+ T Cells Induce Fatal Brainstem Pathology during Cerebral Malaria via Luminal Antigen-Specific Engagement of Brain Vasculature. |
title_sort | cd8 t cells induce fatal brainstem pathology during cerebral malaria via luminal antigen specific engagement of brain vasculature |
url | https://doi.org/10.1371/journal.ppat.1006022 |
work_keys_str_mv | AT phillipaswanson cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT geoffreythart cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT matthewvrusso cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT debasisnayak cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT takeleyazew cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT mirnapena cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT shahidmkhan cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT chrisjjanse cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT susankpierce cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature AT dorianbmcgavern cd8tcellsinducefatalbrainstempathologyduringcerebralmalariavialuminalantigenspecificengagementofbrainvasculature |