Oscillation theorems for nonlinear differential equations
We establish new oscillation theorems for the nonlinear differential equation $$[a(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)]'+q(t)f(x(t))=0, \alpha>0$$ where $a,q:[t0,\infty)\rightarrow R, \psi,f:R\rightarrow R$ are continuous, $a(t)>0$ and $\psi(x)>0$, $xf(x)>0$ for $x\not=0$....
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Szeged
2000-01-01
|
Series: | Electronic Journal of Qualitative Theory of Differential Equations |
Online Access: | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=58 |
_version_ | 1827951412343996416 |
---|---|
author | Jelena Manojlović |
author_facet | Jelena Manojlović |
author_sort | Jelena Manojlović |
collection | DOAJ |
description | We establish new oscillation theorems for the nonlinear differential equation
$$[a(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)]'+q(t)f(x(t))=0, \alpha>0$$
where $a,q:[t0,\infty)\rightarrow R, \psi,f:R\rightarrow R$ are continuous, $a(t)>0$ and $\psi(x)>0$, $xf(x)>0$ for $x\not=0$. These criteria involve the use of averaging functions. |
first_indexed | 2024-04-09T13:42:24Z |
format | Article |
id | doaj.art-30ea8a2b513f4e9e84308d4d544c8c03 |
institution | Directory Open Access Journal |
issn | 1417-3875 |
language | English |
last_indexed | 2024-04-09T13:42:24Z |
publishDate | 2000-01-01 |
publisher | University of Szeged |
record_format | Article |
series | Electronic Journal of Qualitative Theory of Differential Equations |
spelling | doaj.art-30ea8a2b513f4e9e84308d4d544c8c032023-05-09T07:52:56ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752000-01-012000112110.14232/ejqtde.2000.1.158Oscillation theorems for nonlinear differential equationsJelena Manojlović0University of Nis, Nis, SerbiaWe establish new oscillation theorems for the nonlinear differential equation $$[a(t)\psi(x(t))|x'(t)|^{\alpha-1}x'(t)]'+q(t)f(x(t))=0, \alpha>0$$ where $a,q:[t0,\infty)\rightarrow R, \psi,f:R\rightarrow R$ are continuous, $a(t)>0$ and $\psi(x)>0$, $xf(x)>0$ for $x\not=0$. These criteria involve the use of averaging functions.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=58 |
spellingShingle | Jelena Manojlović Oscillation theorems for nonlinear differential equations Electronic Journal of Qualitative Theory of Differential Equations |
title | Oscillation theorems for nonlinear differential equations |
title_full | Oscillation theorems for nonlinear differential equations |
title_fullStr | Oscillation theorems for nonlinear differential equations |
title_full_unstemmed | Oscillation theorems for nonlinear differential equations |
title_short | Oscillation theorems for nonlinear differential equations |
title_sort | oscillation theorems for nonlinear differential equations |
url | http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1¶mtipus_ertek=publication¶m_ertek=58 |
work_keys_str_mv | AT jelenamanojlovic oscillationtheoremsfornonlineardifferentialequations |