Summary: | Structural damage detection and safety evaluations have emerged as a core driving force in structural health monitoring (SHM). Focusing on the multi-source monitoring data in sensing systems and the uncertainty caused by initial defects and monitoring errors, in this study, we develop a comprehensive method for evaluating structural safety, named multi-source fusion uncertainty cloud inference (MFUCI), that focuses on characterizing the relationship between condition indexes and structural performance in order to quantify the structural health status. Firstly, based on cloud theory, the cloud numerical characteristics of the condition index cloud drops are used to establish the qualitative rule base. Next, the proposed multi-source fusion generator yields a multi-source joint certainty degree, which is then transformed into cloud drops with certainty degree information. Lastly, a quantitative structural health evaluation is performed through precision processing. This study focuses on the numerical simulation of an RC frame at the structural level and an RC T-beam damage test at the component level, based on the stiffness degradation process. The results show that the proposed method is effective at evaluating the health of components and structures in a quantitative manner. It demonstrates reliability and robustness by incorporating uncertainty information through noise immunity and cross-domain inference, outperforming baseline models such as Bayesian neural network (BNN) in uncertainty estimations and LSTM in point estimations.
|