On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations

In this paper, effective oscillation criteria for third-order delay differential equations of the form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open=...

Full description

Bibliographic Details
Main Authors: Irena Jadlovská, George E. Chatzarakis, Jozef Džurina, Said R. Grace
Format: Article
Language:English
Published: MDPI AG 2021-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/14/1675
_version_ 1797526641039114240
author Irena Jadlovská
George E. Chatzarakis
Jozef Džurina
Said R. Grace
author_facet Irena Jadlovská
George E. Chatzarakis
Jozef Džurina
Said R. Grace
author_sort Irena Jadlovská
collection DOAJ
description In this paper, effective oscillation criteria for third-order delay differential equations of the form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><msub><mi>r</mi><mn>2</mn></msub><msup><mfenced separators="" open="(" close=")"><msub><mi>r</mi><mn>1</mn></msub><msup><mi>y</mi><mo>′</mo></msup></mfenced><mo>′</mo></msup></mfenced><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>q</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> ensuring that any nonoscillatory solution tends to zero asymptotically, are established. The results become sharp when applied to a Euler-type delay differential equation and, to the best of our knowledge, improve all existing results from the literature. Examples are provided to illustrate the importance of the main results.
first_indexed 2024-03-10T09:32:13Z
format Article
id doaj.art-30fcb9f424d748cb903eeaeafde203d0
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-10T09:32:13Z
publishDate 2021-07-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-30fcb9f424d748cb903eeaeafde203d02023-11-22T04:20:31ZengMDPI AGMathematics2227-73902021-07-01914167510.3390/math9141675On Sharp Oscillation Criteria for General Third-Order Delay Differential EquationsIrena Jadlovská0George E. Chatzarakis1Jozef Džurina2Said R. Grace3Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 04001 Košice, SlovakiaDepartment of Electrical and Electronic Engineering Educators, School of Pedagogical and Technological Education (ASPETE) Marousi, 15122 Athens, GreeceDepartment of Mathematics and Theoretical Informatics, Faculty of Electrical Engineering and Informatics, Technical University of Košice, Letná 9, 04200 Košice, SlovakiaDepartment of Engineering Mathematics, Faculty of Engineering, Cairo University, Orman, Giza 12221, EgyptIn this paper, effective oscillation criteria for third-order delay differential equations of the form, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mfenced separators="" open="(" close=")"><msub><mi>r</mi><mn>2</mn></msub><msup><mfenced separators="" open="(" close=")"><msub><mi>r</mi><mn>1</mn></msub><msup><mi>y</mi><mo>′</mo></msup></mfenced><mo>′</mo></msup></mfenced><mo>′</mo></msup><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>+</mo><mi>q</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mi>y</mi><mrow><mo>(</mo><mi>τ</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>)</mo></mrow><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> ensuring that any nonoscillatory solution tends to zero asymptotically, are established. The results become sharp when applied to a Euler-type delay differential equation and, to the best of our knowledge, improve all existing results from the literature. Examples are provided to illustrate the importance of the main results.https://www.mdpi.com/2227-7390/9/14/1675third-order differential equationdelayproperty Aoscillation
spellingShingle Irena Jadlovská
George E. Chatzarakis
Jozef Džurina
Said R. Grace
On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
Mathematics
third-order differential equation
delay
property A
oscillation
title On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
title_full On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
title_fullStr On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
title_full_unstemmed On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
title_short On Sharp Oscillation Criteria for General Third-Order Delay Differential Equations
title_sort on sharp oscillation criteria for general third order delay differential equations
topic third-order differential equation
delay
property A
oscillation
url https://www.mdpi.com/2227-7390/9/14/1675
work_keys_str_mv AT irenajadlovska onsharposcillationcriteriaforgeneralthirdorderdelaydifferentialequations
AT georgeechatzarakis onsharposcillationcriteriaforgeneralthirdorderdelaydifferentialequations
AT jozefdzurina onsharposcillationcriteriaforgeneralthirdorderdelaydifferentialequations
AT saidrgrace onsharposcillationcriteriaforgeneralthirdorderdelaydifferentialequations