A computational discharge model for sphere–plane long air gap under switching impulse voltage

There are lots of sphere–plane air gaps in valve halls in extra-high-voltage and ultra-high-voltage converter stations. Accurate prediction for discharge characteristics of sphere–plane gaps is of great significance for the selection of shielding structure and determining the dielectric strength of...

Full description

Bibliographic Details
Main Authors: Yaqi Fang, Hongxain Tu, Lei Jia, Enwen Li, Lei Liu, Guoli Wang, Xiaoxing Zhang
Format: Article
Language:English
Published: AIP Publishing LLC 2023-05-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/5.0148740
_version_ 1797771823355527168
author Yaqi Fang
Hongxain Tu
Lei Jia
Enwen Li
Lei Liu
Guoli Wang
Xiaoxing Zhang
author_facet Yaqi Fang
Hongxain Tu
Lei Jia
Enwen Li
Lei Liu
Guoli Wang
Xiaoxing Zhang
author_sort Yaqi Fang
collection DOAJ
description There are lots of sphere–plane air gaps in valve halls in extra-high-voltage and ultra-high-voltage converter stations. Accurate prediction for discharge characteristics of sphere–plane gaps is of great significance for the selection of shielding structure and determining the dielectric strength of the valve hall. In this paper, based on the physical process of corona inception and continuous leader inception, a computational model for calculating the discharge voltage of a sphere–plane air gap under positive switching impulse voltage is proposed, and the leader characteristics and discharge voltage are analyzed. Then, the switching impulse discharge test of the sphere–plane gap with 0.15, 2, and 0.3 m radius spherical electrodes is carried out to verify the correctness of the model. The results show that the discharge voltage calculated by the proposed method is consistent with the test results, and the error is within 7.3%. The leader inception voltage and inception time increase with the increasing spherical electrode radius at the same gap distance, and an identical spherical electrode require higher leader inception voltage and faster leader inception time with the increasing gap distance.
first_indexed 2024-03-12T21:42:07Z
format Article
id doaj.art-310d562619134163a40601e988a1d314
institution Directory Open Access Journal
issn 2158-3226
language English
last_indexed 2024-03-12T21:42:07Z
publishDate 2023-05-01
publisher AIP Publishing LLC
record_format Article
series AIP Advances
spelling doaj.art-310d562619134163a40601e988a1d3142023-07-26T15:31:54ZengAIP Publishing LLCAIP Advances2158-32262023-05-01135055127055127-910.1063/5.0148740A computational discharge model for sphere–plane long air gap under switching impulse voltageYaqi Fang0Hongxain Tu1Lei Jia2Enwen Li3Lei Liu4Guoli Wang5Xiaoxing Zhang6Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, ChinaHubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, ChinaElectric Power Research Institute, China Southern Power Grid, Guangzhou 510663, ChinaElectric Power Research Institute, China Southern Power Grid, Guangzhou 510663, ChinaElectric Power Research Institute, China Southern Power Grid, Guangzhou 510663, ChinaElectric Power Research Institute, China Southern Power Grid, Guangzhou 510663, ChinaHubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan 430068, ChinaThere are lots of sphere–plane air gaps in valve halls in extra-high-voltage and ultra-high-voltage converter stations. Accurate prediction for discharge characteristics of sphere–plane gaps is of great significance for the selection of shielding structure and determining the dielectric strength of the valve hall. In this paper, based on the physical process of corona inception and continuous leader inception, a computational model for calculating the discharge voltage of a sphere–plane air gap under positive switching impulse voltage is proposed, and the leader characteristics and discharge voltage are analyzed. Then, the switching impulse discharge test of the sphere–plane gap with 0.15, 2, and 0.3 m radius spherical electrodes is carried out to verify the correctness of the model. The results show that the discharge voltage calculated by the proposed method is consistent with the test results, and the error is within 7.3%. The leader inception voltage and inception time increase with the increasing spherical electrode radius at the same gap distance, and an identical spherical electrode require higher leader inception voltage and faster leader inception time with the increasing gap distance.http://dx.doi.org/10.1063/5.0148740
spellingShingle Yaqi Fang
Hongxain Tu
Lei Jia
Enwen Li
Lei Liu
Guoli Wang
Xiaoxing Zhang
A computational discharge model for sphere–plane long air gap under switching impulse voltage
AIP Advances
title A computational discharge model for sphere–plane long air gap under switching impulse voltage
title_full A computational discharge model for sphere–plane long air gap under switching impulse voltage
title_fullStr A computational discharge model for sphere–plane long air gap under switching impulse voltage
title_full_unstemmed A computational discharge model for sphere–plane long air gap under switching impulse voltage
title_short A computational discharge model for sphere–plane long air gap under switching impulse voltage
title_sort computational discharge model for sphere plane long air gap under switching impulse voltage
url http://dx.doi.org/10.1063/5.0148740
work_keys_str_mv AT yaqifang acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT hongxaintu acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT leijia acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT enwenli acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT leiliu acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT guoliwang acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT xiaoxingzhang acomputationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT yaqifang computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT hongxaintu computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT leijia computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT enwenli computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT leiliu computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT guoliwang computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage
AT xiaoxingzhang computationaldischargemodelforsphereplanelongairgapunderswitchingimpulsevoltage