Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U
Summary Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-11-01
|
Series: | Microbial Biotechnology |
Online Access: | https://doi.org/10.1111/1751-7915.12741 |
_version_ | 1818133861735858176 |
---|---|
author | Wael Ahmed Ismail Magdy El‐Said Mohamed Maysoon N. Awadh Christian Obuekwe Ashraf M. El Nayal |
author_facet | Wael Ahmed Ismail Magdy El‐Said Mohamed Maysoon N. Awadh Christian Obuekwe Ashraf M. El Nayal |
author_sort | Wael Ahmed Ismail |
collection | DOAJ |
description | Summary Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth‐associated mode with a maximum crude biosurfactants yield of 10.1 g l−1, which reduced the surface tension of the cell‐free culture supernatant to 30.6 mN m−1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha–Rha–C12–C12 dominated the congeners’ profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high‐boiling heavy fuel fraction (BP 426–565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315–426 °C). Analysis of the maltene fraction revealed compositional changes. The number‐average (Mn) and weight‐average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon‐rich substrate for production of the high‐value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition. |
first_indexed | 2024-12-11T08:59:27Z |
format | Article |
id | doaj.art-31195a4577d04363b182d65301be296d |
institution | Directory Open Access Journal |
issn | 1751-7915 |
language | English |
last_indexed | 2024-12-11T08:59:27Z |
publishDate | 2017-11-01 |
publisher | Wiley |
record_format | Article |
series | Microbial Biotechnology |
spelling | doaj.art-31195a4577d04363b182d65301be296d2022-12-22T01:13:47ZengWileyMicrobial Biotechnology1751-79152017-11-011061628163910.1111/1751-7915.12741Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6UWael Ahmed Ismail0Magdy El‐Said Mohamed1Maysoon N. Awadh2Christian Obuekwe3Ashraf M. El Nayal4Environmental Biotechnology Program Life Sciences Department College of Graduate Studies Arabian Gulf University Manama Kingdom of BahrainBiotechnology, Research and Development Center Saudi Aramco Dhahran Saudi ArabiaEnvironmental Biotechnology Program Life Sciences Department College of Graduate Studies Arabian Gulf University Manama Kingdom of BahrainDepartment of Biological Sciences College of Science Kuwait University Kuwait KuwaitEnvironmental Biotechnology Program Life Sciences Department College of Graduate Studies Arabian Gulf University Manama Kingdom of BahrainSummary Heavy vacuum gas oil (HVGO) is a complex and viscous hydrocarbon stream that is produced as the bottom side product from the vacuum distillation units in petroleum refineries. HVGO is conventionally treated with thermochemical process, which is costly and environmentally polluting. Here, we investigate two petroleum biotechnology applications, namely valorization and bioupgrading, as green approaches for valorization and upgrading of HVGO. The Pseudomonas aeruginosa AK6U strain grew on 20% v/v of HVGO as a sole carbon and sulfur source. It produced rhamnolipid biosurfactants in a growth‐associated mode with a maximum crude biosurfactants yield of 10.1 g l−1, which reduced the surface tension of the cell‐free culture supernatant to 30.6 mN m−1 within 1 week of incubation. The rarely occurring dirhamnolipid Rha–Rha–C12–C12 dominated the congeners’ profile of the biosurfactants produced from HVGO. Heavy vacuum gas oil was recovered from the cultures and abiotic controls and the maltene fraction was extracted for further analysis. Fractional distillation (SimDist) of the biotreated maltene fraction showed a relative decrease in the high‐boiling heavy fuel fraction (BP 426–565 °C) concomitant with increase in the lighter distillate diesel fraction (BP 315–426 °C). Analysis of the maltene fraction revealed compositional changes. The number‐average (Mn) and weight‐average (Mw) molecular weights, as well as the absolute number of hydrocarbons and sulfur heterocycles were higher in the biotreated maltene fraction of HVGO. These findings suggest that HVGO can be potentially exploited as a carbon‐rich substrate for production of the high‐value biosurfactants by P. aeruginosa AK6U and to concomitantly improve/upgrade its chemical composition.https://doi.org/10.1111/1751-7915.12741 |
spellingShingle | Wael Ahmed Ismail Magdy El‐Said Mohamed Maysoon N. Awadh Christian Obuekwe Ashraf M. El Nayal Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U Microbial Biotechnology |
title | Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U |
title_full | Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U |
title_fullStr | Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U |
title_full_unstemmed | Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U |
title_short | Simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant‐producing Pseudomonas aeruginosa AK6U |
title_sort | simultaneous valorization and biocatalytic upgrading of heavy vacuum gas oil by the biosurfactant producing pseudomonas aeruginosa ak6u |
url | https://doi.org/10.1111/1751-7915.12741 |
work_keys_str_mv | AT waelahmedismail simultaneousvalorizationandbiocatalyticupgradingofheavyvacuumgasoilbythebiosurfactantproducingpseudomonasaeruginosaak6u AT magdyelsaidmohamed simultaneousvalorizationandbiocatalyticupgradingofheavyvacuumgasoilbythebiosurfactantproducingpseudomonasaeruginosaak6u AT maysoonnawadh simultaneousvalorizationandbiocatalyticupgradingofheavyvacuumgasoilbythebiosurfactantproducingpseudomonasaeruginosaak6u AT christianobuekwe simultaneousvalorizationandbiocatalyticupgradingofheavyvacuumgasoilbythebiosurfactantproducingpseudomonasaeruginosaak6u AT ashrafmelnayal simultaneousvalorizationandbiocatalyticupgradingofheavyvacuumgasoilbythebiosurfactantproducingpseudomonasaeruginosaak6u |