A Novel Chaos-Based Color Image Encryption Scheme Using Bit-Level Permutation

To ensure the security of digital images during transmission and storage, an efficient and secure chaos-based color image encryption scheme using bit-level permutation is proposed. Our proposed image encryption algorithm belongs to symmetric cryptography. Here, we process three color components simu...

Full description

Bibliographic Details
Main Authors: Zhen Li, Changgen Peng, Weijie Tan, Liangrong Li
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/9/1497
Description
Summary:To ensure the security of digital images during transmission and storage, an efficient and secure chaos-based color image encryption scheme using bit-level permutation is proposed. Our proposed image encryption algorithm belongs to symmetric cryptography. Here, we process three color components simultaneously instead of individually, and consider the correlation between them. We propose a novel bit-level permutation algorithm that contains three parts: a plain-image related rows and columns substitution, a pixel-level roll shift part, and a bit-level cyclic shift part. In the plain-related rows and columns substitution part, we involve the plain-image information to generate a control sequence by using a skew tent system. This process ensures that the correlation between three color components can be totally broken, and our cryptosystem has enough plain-image sensitivity to resist the differential attack. In the pixel-level roll shift part and bit-level cyclic shift part, we have a fully bit-level permutation controlled by two sequences using a Rucklidge system. The simulation and some common security analyses are given. Test results show that our proposed scheme has good security performance and a speed advantage compared to other works.
ISSN:2073-8994