A covariant momentum representation for loop corrections in gravity
Abstract A transformation is introduced in momentum representation to keep a covariant description at every stage of a loop computation in gravity. The procedure treats on equal footing local internal and space-time symmetries althought the complete transformation is known for the former [1] whereas...
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2020-05-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP05(2020)131 |
Summary: | Abstract A transformation is introduced in momentum representation to keep a covariant description at every stage of a loop computation in gravity. The procedure treats on equal footing local internal and space-time symmetries althought the complete transformation is known for the former [1] whereas in gravity we solve for the first few orders in an expansion. As an explicit application the one loop UV divergences of Hilbert-Einstein gravity with a cosmological constant and spin 0, 1/2 and 1 matter are computed with functional methods and in a field-covariant formalism. |
---|---|
ISSN: | 1029-8479 |