Simulations of Sky Radiances in Red and Blue Channels at Various Aerosol Conditions Using Radiative Transfer Modeling

We conducted a theoretical analysis of the relationship between red-to-blue (RBR) color intensities and aerosol optical properties. RBR values are obtained by radiative transfer simulations of diffuse sky radiances. Changes in atmospheric aerosol concentration (parametrized by aerosol optical depth,...

Full description

Bibliographic Details
Main Authors: Christos-Panagiotis Giannaklis, Stavros-Andreas Logothetis, Vasileios Salamalikis, Panayiotis Tzoumanikas, Konstantinos Katsidimas, Andreas Kazantzidis
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Environmental Sciences Proceedings
Subjects:
Online Access:https://www.mdpi.com/2673-4931/26/1/89
Description
Summary:We conducted a theoretical analysis of the relationship between red-to-blue (RBR) color intensities and aerosol optical properties. RBR values are obtained by radiative transfer simulations of diffuse sky radiances. Changes in atmospheric aerosol concentration (parametrized by aerosol optical depth, AOD), particle’s size distribution (parametrized by Ångström exponent, AE) and aerosols’ scattering (parametrized by single scattering albedo—SSA) lead to variability in sky radiances and, thus, affect the RBR ratio. RBR is highly sensitive to AOD as high aerosol load in the atmosphere causes high RBR. AE seems to strongly affect the RBR, while SSA effect the RBR, but not to such a great extent.
ISSN:2673-4931