Spark Plasma Sintering of Low Alloy Steel Modified with Silicon Carbide

The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA) process and sintered by spark plasma...

Full description

Bibliographic Details
Main Authors: Hebda M., Dębecka H., Miernik K., Kazior J.
Format: Article
Language:English
Published: Polish Academy of Sciences 2016-06-01
Series:Archives of Metallurgy and Materials
Subjects:
Online Access:http://www.degruyter.com/view/j/amm.2016.61.issue-2/amm-2016-0088/amm-2016-0088.xml?format=INT
Description
Summary:The influence of adding different amounts of silicon carbide on the properties (density, transverse rupture strength, microhardness and corrosion resistance) and microstructure of low alloy steel was investigated. Samples were prepared by mechanical alloying (MA) process and sintered by spark plasma sintering (SPS) technique. After the SPS process, half of each of obtained samples was heat-treated in a vacuum furnace. The results show that the high-density materials have been achieved. Homogeneous and fine microstructure was obtained. The heat treatment that followed the SPS process resulted in an increase in the mechanical and plastic properties of samples with the addition 1wt. % of silicon carbide. The investigated compositions containing 1 wt.% of SiC had better corrosion resistance than samples with 3 wt.% of silicon carbide addition. Moreover, corrosion resistance of the samples with 1 wt.% of SiC can further be improved by applying heat treatment.
ISSN:2300-1909