Synthesis and Evaluation of Thermoresponsive Renewable Lipid-Based Block Copolymers for Drug Delivery

Polymeric micelle forming from self-assembly of amphiphilic macromolecules is one of the most potent drug delivery systems. Fatty acids, naturally occurring hydrophobic lipid components, can be considered as potential candidates for the fabrication of block copolymer micelles. However, examples of s...

Full description

Bibliographic Details
Main Authors: Huiqi Wang, Aman Ullah
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/17/3436
Description
Summary:Polymeric micelle forming from self-assembly of amphiphilic macromolecules is one of the most potent drug delivery systems. Fatty acids, naturally occurring hydrophobic lipid components, can be considered as potential candidates for the fabrication of block copolymer micelles. However, examples of synthesis of responsive block copolymers using renewable fatty acids are scarce. Herein, we report the synthesis, characterization and testing of block copolymer micelles composed of a renewable fatty-acid-based hydrophobic block and thermoresponsive hydrophilic block for controlled drug delivery. The block copolymers of functionalized fatty acid and poly(N-isopropylacrylamide) (PNIPAM) were prepared via consecutive microwave-assisted reversible addition fragmentation chain transfer (RAFT) polymerization. The block copolymers with variable hydrophobic block length self-assembled in aqueous media and formed spherical nanoparticles of ~30 nm with low critical micelle concentration (CMC). To demonstrate the proof-of-concept, carbamazepine (CBZ) was used as a hydrophobic model drug to evaluate the performance of these micelles as nanocarriers. The in vitro drug release tests were carried out below (25 °C) and above (37 °C) the lower critical solution temperature (LCST) of the block copolymer. The drug release showed obvious temperature-triggered response and an accelerated drug release at 37 °C.
ISSN:2073-4360